# Expected output --------------------------------------------------------- pigs4_exp <- tibble::tibble( term = c("count", "total_x", "total_y", "rate_x", "rate_y"), mean = c(1.333333333333333259318, 5, 5, 0.2666666666666666629659, 0.2666666666666666629659), sd = c(0.5773502691896257310589, 0, 0, 0.1154700538379251628651, 0.1154700538379251628651), median = c(1, 5, 5, 0.2, 0.2), min = c(1, 5, 5, 0.2, 0.2), max = c(2, 5, 5, 0.4, 0.4), na_count = numeric(5), na_rate = numeric(5), ) iris_exp <- tibble::tibble( term = c("count", "total_x", "total_y", "rate_x", "rate_y"), mean = c(25.4, 150, 150, 0.1693333333333333357018, 0.1693333333333333357018), sd = c(41.22081459112077794771, 0, 0, 0.2748054306074718677877, 0.2748054306074718677877), median = c(1.5, 150, 150, 0.01, 0.01), min = c(0, 150, 150, 0, 0), max = c(125, 150, 150, 0.8333333333333333703408, 0.8333333333333333703408), na_count = numeric(5), na_rate = numeric(5), ) mtcars_exp <- tibble::tibble( term = c("count", "total_x", "total_y", "rate_x", "rate_y"), mean = c( 2.472727272727272662678, 32, 32, 0.07727272727272727070869, 0.07727272727272727070869 ), sd = c(7.38079225260366467154, 0, 0, 0.2306497578938645209856, 0.2306497578938645209856), median = c(0, 32, 32, 0, 0), min = c(0, 32, 32, 0, 0), max = rep(c(32, 1), 3:2), na_count = numeric(5), na_rate = numeric(5), ) # Testing ----------------------------------------------------------------- test_that("`audit()` for `duplicate_count_colpair()` works correctly", { pigs4 %>% duplicate_count_colpair() %>% audit() %>% expect_equal(pigs4_exp) iris %>% duplicate_count_colpair() %>% audit() %>% expect_equal(iris_exp) mtcars %>% duplicate_count_colpair() %>% audit() %>% expect_equal(mtcars_exp) })