library(dplyr) data(pedcan_expression) df_expr <- select(pedcan_expression, starts_with("A")) test_that("step_select_cv works", { means <- apply(df_expr, 2, mean) sds <- apply(df_expr, 2, sd) cvs <- sds / means rec <- recipe(~ ., data = df_expr) %>% step_select_cv(all_numeric_predictors(), cutoff = 1) expect_equal(nrow(tidy(rec, 1)), 1) prepped <- prep(rec) cv_tidy <- tidy(prepped, 1) expect_equal(nrow(cv_tidy), ncol(df_expr)) expect_equal(pull(cv_tidy, cv, terms), cvs) expect_true(all(cv_tidy[cv_tidy$kept, ]$cv >= 1)) expect_true(all(cv_tidy[!cv_tidy$kept, ]$cv < 1)) baked <- bake(prepped, new_data = NULL) expect_setequal(colnames(baked), names(cvs[cvs > 1])) expect_invisible(recipes_pkg_check(required_pkgs.step_select_cv())) })