bw <- c("black", "white") test_that("Edgy col_bin scenarios", { # Do these cases make sense? expect_equal(col_bin(bw, NULL)(1), "#777777") expect_equal(col_bin(bw, 1)(1), "#FFFFFF") }) test_that("Outside of domain returns na.color", { suppressWarnings({ expect_identical("#808080", col_factor(bw, letters)("foo")) expect_identical("#808080", col_quantile(bw, 0:1)(-1)) expect_identical("#808080", col_quantile(bw, 0:1)(2)) expect_identical("#808080", col_numeric(bw, c(0, 1))(-1)) expect_identical("#808080", col_numeric(bw, c(0, 1))(2)) expect_true(is.na(col_factor(bw, letters, na.color = NA)("foo"))) expect_true(is.na(col_quantile(bw, 0:1, na.color = NA)(-1))) expect_true(is.na(col_quantile(bw, 0:1, na.color = NA)(2))) expect_true(is.na(col_numeric(bw, c(0, 1), na.color = NA)(-1))) expect_true(is.na(col_numeric(bw, c(0, 1), na.color = NA)(2))) }) expect_warning(col_factor(bw, letters, na.color = NA)("foo")) expect_warning(col_quantile(bw, 0:1, na.color = NA)(-1)) expect_warning(col_quantile(bw, 0:1, na.color = NA)(2)) expect_warning(col_numeric(bw, c(0, 1), na.color = NA)(-1)) expect_warning(col_numeric(bw, c(0, 1), na.color = NA)(2)) }) test_that("Basic color accuracy", { expect_identical(c("#000000", "#808080", "#FFFFFF"), col_numeric(colorRamp(bw), NULL)(c(0, 0.5, 1))) expect_identical(c("#000000", "#FFFFFF"), col_bin(bw, NULL)(c(1, 2))) expect_identical(c("#000000", "#FFFFFF"), col_bin(bw, c(1, 2))(c(1, 2))) expect_identical(c("#000000", "#FFFFFF"), col_bin(bw, c(1, 2), 2)(c(1, 2))) expect_identical(c("#000000", "#FFFFFF"), col_bin(bw, NULL, bins = c(1, 1.5, 2))(c(1, 2))) expect_identical(c("#000000", "#FFFFFF"), col_bin(bw, c(1, 2), bins = c(1, 1.5, 2))(c(1, 2))) expect_identical(c("#000000", "#777777", "#FFFFFF"), col_numeric(bw, NULL)(1:3)) expect_identical(c("#000000", "#777777", "#FFFFFF"), col_numeric(bw, c(1:3))(1:3)) expect_identical(rev(c("#000000", "#777777", "#FFFFFF")), col_numeric(rev(bw), c(1:3))(1:3)) # domain != unique(x) expect_identical(c("#000000", "#0E0E0E", "#181818"), col_factor(bw, LETTERS)(LETTERS[1:3])) # domain == unique(x) expect_identical(c("#000000", "#777777", "#FFFFFF"), col_factor(bw, LETTERS[1:3])(LETTERS[1:3])) # no domain expect_identical(c("#000000", "#777777", "#FFFFFF"), col_factor(bw, NULL)(LETTERS[1:3])) # Non-factor domains are sorted unless instructed otherwise expect_identical(c("#000000", "#777777", "#FFFFFF"), col_factor(bw, rev(LETTERS[1:3]))(LETTERS[1:3])) expect_identical(rev(c("#000000", "#777777", "#FFFFFF")), col_factor(bw, rev(LETTERS[1:3]), ordered = TRUE)(LETTERS[1:3])) }) test_that("col_numeric respects alpha", { expect_equal( col_numeric(c("#FF000000", "#FF0000FF"), c(0, 1), alpha = TRUE)(0.5), "#FF000080" ) }) test_that("CIELab overflow", { expect_identical(c("#FFFFFF", "#CFB1FF", "#9265FF", "#0000FF"), colour_ramp(c("white", "blue"))(0:3 / 3)) }) test_that("factors match by name, not position", { full <- factor(letters[1:5]) pal <- col_factor("magma", na.color = NA, levels = full) partial <- full[2:4] expect_identical(pal(partial), pal(droplevels(partial))) # Sending in values outside of the color scale should result in a warning and na.color expect_warning(col <- pal(letters[10:20])) expect_true(all(is.na(col))) }) test_that("qualitative palettes don't interpolate", { pal <- col_factor("Accent", na.color = NA, levels = letters[1:5]) allColors <- RColorBrewer::brewer.pal( n = RColorBrewer::brewer.pal.info["Accent", "maxcolors"], name = "Accent" ) # If we're not interpolating, then the colors for each level should match # exactly with the color in the corresponding position in the palette. expect_identical(pal(letters[1:5]), allColors[1:5]) # Same behavior when domain is provided initially expect_identical( col_factor("Accent", domain = rep(letters[1:5], 2))(letters[1:5]), allColors[1:5] ) # Same behavior when domain is provided initially, and is a factor expect_identical( col_factor("Accent", domain = factor(rep(letters[5:1], 2)))(letters[1:5]), allColors[1:5] ) # Same behavior when domain is provided initially, and is not a factor expect_identical( col_factor("Accent", domain = rep(letters[5:1], 2), ordered = TRUE)(letters[5:1]), allColors[1:5] ) # Same behavior when no domain or level is provided initially expect_identical( col_factor("Accent", NULL)(letters[1:5]), allColors[1:5] ) # Values outside of the originally provided levels should be NA with warning expect_warning(pal(letters[6])) expect_true(suppressWarnings(is.na(pal(letters[6])))) }) test_that("OK, qualitative palettes sometimes interpolate", { pal <- col_factor("Accent", na.color = NA, levels = letters[1:20]) allColors <- RColorBrewer::brewer.pal( n = RColorBrewer::brewer.pal.info["Accent", "maxcolors"], name = "Accent" ) expect_warning(result <- pal(letters[1:20])) # The first and last levels are the first and last palette colors expect_true(all(result[c(1, 20)] %in% allColors)) # All the rest are interpolated though expect_true(!any(result[-c(1, 20)] %in% allColors)) }) verifyReversal <- function(colorFunc, values, ..., filter = identity) { f1 <- filter(colorFunc("Blues", domain = values, ...)(values)) f2 <- filter(colorFunc("Blues", domain = NULL, ...)(values)) f3 <- filter(colorFunc("Blues", domain = values, reverse = FALSE, ...)(values)) f4 <- filter(colorFunc("Blues", domain = NULL, reverse = FALSE, ...)(values)) r1 <- filter(colorFunc("Blues", domain = values, reverse = TRUE, ...)(values)) r2 <- filter(colorFunc("Blues", domain = NULL, reverse = TRUE, ...)(values)) expect_identical(f1, f2) expect_identical(f1, f3) expect_identical(f1, f4) expect_identical(r1, r2) expect_identical(f1, rev(r1)) } test_that("col_numeric can be reversed", { verifyReversal(col_numeric, 1:10) }) test_that("col_bin can be reversed", { # col_bin needs to filter because with 10 values and 7 bins, there is some # repetition that occurs in the results. Hard to explain but easy to see: # scales::show_col(col_bin("Blues", NULL)(1:8)) # scales::show_col(col_bin("Blues", NULL, reverse = TRUE)(1:8)) verifyReversal(col_bin, 1:10, filter = unique) }) test_that("col_quantile can be reversed", { verifyReversal(col_quantile, 1:10, n = 7) }) test_that("col_factor can be reversed", { # With interpolation verifyReversal(col_factor, letters[1:8]) # Without interpolation accent <- suppressWarnings(RColorBrewer::brewer.pal(Inf, "Accent")) result1 <- col_factor("Accent", NULL)(letters[1:5]) expect_identical(result1, head(accent, 5)) # Reversing a qualitative palette means we should pull the same colors, but # apply them in reverse order result2 <- col_factor("Accent", NULL, reverse = TRUE)(letters[1:5]) expect_identical(result2, rev(head(accent, 5))) }) test_that("Palettes with ncolor < 3 work properly", { test_palette <- function(palette) { colors <- col_factor(palette, letters[1:2])(letters[1:2]) # brewer.pal returns minimum 3 colors, and warns if you request less than 3. expected_colors <- suppressWarnings(RColorBrewer::brewer.pal(2, palette))[1:2] # The expected behavior is that the first two colors in the palette are returned. # This is different than the behavior in Leaflet color* functions; in those # functions, when 2 colors are needed from an RColorBrewer palette, the first and # third colors are used. Using the first and third is arguably a better choice # for sequential and diverging palettes, and very arguably worse for qualitative. # The scales' col_* functions use the first 2 colors for consistency with # scales::brewer_pal. expect_identical(colors, expected_colors) colors <- col_bin(palette, 1:2, bins = 2)(1:2) expect_identical(colors, expected_colors) } # Qualitative palette test_palette("Accent") # Sequential palette test_palette("Blues") # Diverging palette test_palette("Spectral") }) test_that("col_quantile handles skewed data", { expect_snapshot({ x <- c(1:5, rep(10, 10)) col <- col_quantile("RdYlBu", domain = x, n = 7)(x) col <- col_quantile("RdYlBu", domain = NULL, n = 7)(x) }) }) test_that("Arguments to `cut` are respected", { colors1 <- col_bin("Greens", 1:3, 1:3)(1:3) # Intervals are [1,2) and [2,3], so 2 and 3 are the same expect_identical(colors1, c("#E5F5E0", "#A1D99B", "#A1D99B")) colors2 <- col_bin("Blues", 1:3, 1:3, right = TRUE)(1:3) # Intervals are [1,2] and (2,3], so 1 and 2 are the same expect_identical(colors2, c("#DEEBF7", "#DEEBF7", "#9ECAE1")) # Shows that you can use cut + col_factor to achieve finer grained # control than with col_bin pal <- col_factor("Reds", domain = NULL, na.color = NA) colorsTT <- pal(cut(1:3, 1:3, include.lowest = TRUE, right = TRUE)) expect_identical(colorsTT, c("#FEE0D2", "#FEE0D2", "#FC9272")) colorsTF <- pal(cut(1:3, 1:3, include.lowest = TRUE, right = FALSE)) expect_identical(colorsTF, c("#FEE0D2", "#FC9272", "#FC9272")) colorsFT <- pal(cut(1:3, 1:3, include.lowest = FALSE, right = TRUE)) expect_identical(colorsFT, c(NA, "#FEE0D2", "#FC9272")) colorsFF <- pal(cut(1:3, 1:3, include.lowest = FALSE, right = FALSE)) expect_identical(colorsFF, c("#FEE0D2", "#FC9272", NA)) })