context("sar_shape") test_that("observed_shape info is correct", { skip_on_cran() data(galap) fit <- sar_epm2(galap) fit2 <- sar_power(galap) fit3 <- sar_average(data = galap) s3 <- summary(fit3) x <- fit$observed_shape x3 <- s3$Model_table$Shape[17]#epm2 again #in R 3.6.3 it returns the s3..[17] as a factor but later #versions of R return it as a character vector. The as.vector() #is thus here to pass Travis test for past versions. expect_match(as.vector(s3$Model_table$Model[17]), "epm2") expect_match(x, "sigmoid") expect_match(fit2$observed_shape, "convex up") expect_match(x3, "sigmoid") #convex down test test <- data.frame("A" = c( 1, 2, 3, 5, 6, 7, 8, 12, 15, 20, 23, 26, 27, 30, 34, 37, 40, 50), "R" = c(30, 25, 22, 19, 18, 17, 17, 15, 14, 13, 12, 12, 12, 12, 11, 11, 11, 10)) fit4 <- sar_power(test) expect_match(fit4$observed_shape, "convex down") fit5 <- sar_p1(test) expect_match(fit4$observed_shape, "convex down") #sigmoid test test$R <- c(1, 1, 1, 2, 1, 2, 1, 4, 7, 9, 12, 14, 15, 16, 16, 17, 16, 16) fit6 <- sar_weibull4(test) fit7 <- sar_p1(test) fit8 <- sar_loga(test) fit9 <- sar_linear(test) expect_match(fit6$observed_shape, "sigmoid") expect_match(fit7$observed_shape, "sigmoid") expect_match(fit8$observed_shape, "convex up") expect_match(fit9$observed_shape, "linear") })