rxTest({ rxWithSeed( 42, { m1 <- rxode2({ CL ~ (1 - 0.2 * SEX) * (0.807 + 0.00514 * (CRCL - 91.2)) * exp(eta.cl) V1 ~ 4.8 * exp(eta.v1) Q ~ (3.46 + 0.0593 * (WT - 75.1)) * exp(eta.q) V2 ~ 1.93 * (3.13 + 0.0458 * (WT - 75.1)) * exp(eta.v2) cp <- max(linCmt() + err.sd, 0.01) if (cp == 0.01) cp <- NA mSEX <- SEX mWT <- WT mCRCL <- CRCL }) # Make non-random covariates for testing AGE <- round(seq(18, 18 + 29)) SEX <- c(rep(0, 15), rep(1, 15)) WT <- seq(60, 60 + 29) CRCL <- seq(30, 30 + 29) ## id is in lower case to match the event table cov.df <- dplyr::tibble(id = seq_along(AGE), AGE = AGE, SEX = SEX, WT = WT, CRCL = CRCL) s <- c(0, 0.25, 0.5, 0.75, 1, 1.5, seq(2, 24, by = 1)) ## Add 10% diff s <- lapply(s, function(x) { d <- x * 0.1 c(x - d, x + d) }) e <- et() %>% ## Specify the id and weight based dosing from covariate data.frame ## This requires rxode2 XXX et(id = cov.df$id, amt = 6 * cov.df$WT, rate = 6 * cov.df$WT) %>% ## Sampling is added for each ID et(s) %>% as.data.frame() %>% ## Merge the event table with the covarite information merge(cov.df, by = "id") %>% dplyr::as_tibble() e2 <- et() %>% ## Specify the id and weight based dosing from covariate data.frame ## This requires rxode2 XXX et(id = cov.df$id, amt = 6 * cov.df$WT, rate = 6 * cov.df$WT) %>% ## Sampling is added for each ID et(s) e$WT <- e$WT + e$time / 30 e$CRCL <- e$CRCL + e$time / 30 test_that("test resampleID behavior", { for (nStud in c(1, 2)) { f1 <- rxSolve(m1, e, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), addCov = TRUE, addDosing = TRUE, nStud = nStud ) if (nStud == 1) { expect_equal(f1$WT, e$WT) expect_equal(f1$CRCL, e$CRCL) expect_equal(f1$SEX, e$SEX) } f2 <- rxSolve(m1, e, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), addCov = TRUE, resample = c("SEX", "WT", "CRCL"), resampleID = TRUE, addDosing = TRUE, nStud = nStud ) expect_equal(f2$mWT, f2$WT) expect_equal(f2$mCRCL, f2$CRCL) expect_equal(f2$mSEX, f2$SEX) r1 <- f1[!duplicated(f1$id), c("id", "SEX", "WT", "CRCL")] r2 <- f2[!duplicated(f2$id), c("id", "SEX", "WT", "CRCL")] expect_false(isTRUE(all.equal(r1, r2))) ## now test that the covariates are all shifted correctly expect_true(all(r1$WT - r1$CRCL == 30)) expect_true(all(r2$WT - r2$CRCL == 30)) expect_true(all(r1$SEX[r1$CRCL <= 44] == 0)) expect_true(all(r1$SEX[r1$CRCL > 44] == 1)) expect_true(all(r2$SEX[r2$CRCL <= 44] == 0)) expect_true(all(r2$SEX[r2$CRCL > 44] == 1)) f3 <- rxSolve(m1, e, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), addCov = TRUE, resample = c("SEX", "WT", "CRCL"), resampleID = FALSE, addDosing = TRUE, nStud = nStud ) expect_equal(f3$mWT, f3$WT) expect_equal(f3$mCRCL, f3$CRCL) expect_equal(f3$mSEX, f3$SEX) r1 <- f1[!duplicated(f1$id), c("id", "SEX", "WT", "CRCL")] r3 <- f3[!duplicated(f3$id), c("id", "SEX", "WT", "CRCL")] expect_false(isTRUE(all.equal(r1, r3))) ## Now these should be false expect_false(all(r3$WT - r3$CRCL == 30)) expect_false(all(r3$SEX[r3$CRCL <= 44] == 0)) expect_false(all(r3$SEX[r3$CRCL > 44] == 1)) f3 <- rxSolve(m1, e, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), addCov = TRUE, resample = TRUE, resampleID = FALSE, addDosing = TRUE, nStud = nStud ) expect_equal(f3$mWT, f3$WT) expect_equal(f3$mCRCL, f3$CRCL) expect_equal(f3$mSEX, f3$SEX) r1 <- f1[!duplicated(f1$id), c("id", "SEX", "WT", "CRCL")] r3 <- f3[!duplicated(f3$id), c("id", "SEX", "WT", "CRCL")] expect_false(isTRUE(all.equal(r1, r3))) ## Now these should be false expect_false(all(r3$WT - r3$CRCL == 30)) expect_false(all(r3$SEX[r3$CRCL <= 44] == 0)) expect_false(all(r3$SEX[r3$CRCL > 44] == 1)) f2 <- rxSolve(m1, e, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), addCov = TRUE, resample = TRUE, resampleID = TRUE, addDosing = TRUE, nStud = nStud ) expect_equal(f2$mWT, f2$WT) expect_equal(f2$mCRCL, f2$CRCL) expect_equal(f2$mSEX, f2$SEX) r1 <- f1[!duplicated(f1$id), c("id", "SEX", "WT", "CRCL")] r2 <- f2[!duplicated(f2$id), c("id", "SEX", "WT", "CRCL")] expect_false(isTRUE(all.equal(r1, r2))) ## now test that the covariates are all shifted correctly expect_true(all(r1$WT - r1$CRCL == 30)) expect_true(all(r2$WT - r2$CRCL == 30)) expect_true(all(r1$SEX[r1$CRCL <= 44] == 0)) expect_true(all(r1$SEX[r1$CRCL > 44] == 1)) expect_true(all(r2$SEX[r2$CRCL <= 44] == 0)) expect_true(all(r2$SEX[r2$CRCL > 44] == 1)) if (nStud == 1) { f1 <- rxSolve(m1, e, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), addCov = TRUE, resample = FALSE, addDosing = TRUE, nStud = nStud ) expect_equal(f1$WT, e$WT) expect_equal(f1$CRCL, e$CRCL) expect_equal(f1$SEX, e$SEX) } } }) # resample tests; time invariant nsub <- 30 # Simulate Weight based on age and gender AGE <- round(runif(nsub, min = 18, max = 70)) SEX <- round(runif(nsub, min = 0, max = 1)) HTm <- round(rnorm(nsub, 176.3, 0.17 * sqrt(4482)), digits = 1) HTf <- round(rnorm(nsub, 162.2, 0.16 * sqrt(4857)), digits = 1) WTm <- round(exp(3.28 + 1.92 * log(HTm / 100)) * exp(rnorm(nsub, 0, 0.14)), digits = 1) WTf <- round(exp(3.49 + 1.45 * log(HTf / 100)) * exp(rnorm(nsub, 0, 0.17)), digits = 1) WT <- ifelse(SEX == 1, WTf, WTm) CRCL <- round(runif(nsub, 30, 140)) ## id is in lower case to match the event table cov.df <- dplyr::tibble(id = seq_along(AGE), AGE = AGE, SEX = SEX, WT = WT, CRCL = CRCL) s <- c(0, 0.25, 0.5, 0.75, 1, 1.5, seq(2, 24, by = 1)) ## Add 10% diff s <- lapply(s, function(x) { d <- x * 0.1 c(x - d, x + d) }) e <- et(time.units = "hr") %>% ## Specify the id and weight based dosing from covariate data.frame ## This requires rxode2 XXX et(id = cov.df$id, amt = 6 * cov.df$WT, rate = 6 * cov.df$WT) %>% ## Sampling is added for each ID et(s) %>% as.data.frame() %>% ## Merge the event table with the covarite information merge(cov.df, by = "id") %>% dplyr::as_tibble() e2 <- et(time.units = "hr") %>% ## Specify the id and weight based dosing from covariate data.frame ## This requires rxode2 XXX et(id = cov.df$id, amt = 6 * cov.df$WT, rate = 6 * cov.df$WT) %>% ## Sampling is added for each ID et(s) test_that("resample tests: time invariant", { for (resampleID in c(TRUE, FALSE)) { f1 <- rxSolve(m1, e, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), addCov = TRUE ) expect_equal(f1$mWT, f1$WT) expect_equal(f1$mCRCL, f1$CRCL) f2 <- rxSolve(m1, e, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), addCov = TRUE, resample = c("SEX", "WT", "CRCL"), resampleID = resampleID ) expect_equal(f2$mWT, f2$WT) expect_equal(f2$mCRCL, f2$CRCL) f3 <- rxSolve(m1, e, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), keep = c("SEX", "WT", "CRCL"), resample = c("SEX", "WT", "CRCL"), resampleID = resampleID ) expect_equal(f3$mWT, f3$WT) expect_equal(f3$mCRCL, f3$CRCL) r1 <- f1[!duplicated(f1$id), c("id", "SEX", "WT", "CRCL")] r2 <- f2[!duplicated(f2$id), c("id", "SEX", "WT", "CRCL")] expect_false(isTRUE(all.equal(r1, r2))) r3 <- f3[!duplicated(f3$id), c("id", "SEX", "WT", "CRCL")] expect_false(isTRUE(all.equal(r1, r3))) ## Now try icov option f1 <- rxSolve(m1, e2, iCov = cov.df, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), addCov = TRUE ) expect_equal(f1$mWT, f1$WT) expect_equal(f1$mCRCL, f1$CRCL) f2 <- rxSolve(m1, e2, iCov = cov.df, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), addCov = TRUE, resample = c("SEX", "WT", "CRCL"), resampleID = resampleID) expect_equal(f2$mWT, f2$WT) expect_equal(f2$mCRCL, f2$CRCL) f3 <- rxSolve(m1, e2, iCov = cov.df, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), keep = c("SEX", "WT", "CRCL"), resample = c("SEX", "WT", "CRCL"), resampleID = resampleID ) expect_equal(f3$mWT, f3$WT) expect_equal(f3$mCRCL, f3$CRCL) } }) # resample tests; time varying # Make these time-varying covariates e$WT <- e$WT + rnorm(length(e$WT), sd = 1) e$CRCL <- e$CRCL + rnorm(length(e$CRCL), sd = 1) test_that("resample tests: time varying", { for (resampleID in c(TRUE, FALSE)) { f1 <- rxSolve(m1, e, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), addCov = TRUE ) expect_equal(f1$mWT, f1$WT) expect_equal(f1$mCRCL, f1$CRCL) f2 <- rxSolve(m1, e, ## Lotri uses lower-triangular matrix rep. for named matrix omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), addCov = TRUE, resample = c("SEX", "WT", "CRCL"), resampleID = resampleID ) expect_equal(f2$mWT, f2$WT) expect_equal(f2$mCRCL, f2$CRCL) f3 <- rxSolve(m1, e, omega = lotri( eta.cl ~ .306, eta.q ~ 0.0652, eta.v1 ~ .567, eta.v2 ~ .191 ), sigma = lotri(err.sd ~ 0.5), keep = c("SEX", "WT", "CRCL"), resample = c("SEX", "WT", "CRCL"), resampleID = resampleID ) expect_equal(f3$mWT, f3$WT) expect_equal(f3$mCRCL, f3$CRCL) r1 <- f1[!duplicated(f1$id), c("id", "SEX", "WT", "CRCL")] r2 <- f2[!duplicated(f2$id), c("id", "SEX", "WT", "CRCL")] expect_false(isTRUE(all.equal(r1$WT, r2$WT))) ## Now test keep case r1 <- f1[!duplicated(f1$id), c("id", "SEX", "WT", "CRCL")] r3 <- f3[!duplicated(f3$id), c("id", "SEX", "WT", "CRCL")] expect_false(isTRUE(all.equal(r1$WT, r3$WT))) } }) } ) })