rxTest({ if (!.Call(`_rxode2_isIntel`)) { test_that("test meanProb()", { x <- rnorm(10) m <- mean(x) s <- sd(x) v <- var(x) mn <- min(x) mx <- max(x) t1 <- c("0%"=mn, "25%"=m+(s/sqrt(10))*qt(0.25, 9), "50%"=m, "75%"=m+(s/sqrt(10))*qt(0.75, 9), "100%"=mx) expect_equal(meanProbs(x), t1) t1.100 <- c("0%"=mn, "25%"=m+(s/sqrt(100))*qt(0.25, 99), "50%"=m, "75%"=m+(s/sqrt(100))*qt(0.75, 99), "100%"=mx) expect_equal(meanProbs(x, n=100), t1.100) t1.p100 <- c("0%"=mn, "25%"=m+s*sqrt(1.0+(1.0/100))*qt(0.25, 99), "50%"=m, "75%"=m+s*sqrt(1.0+(1.0/100))*qt(0.75, 99), "100%"=mx) expect_equal(meanProbs(x, n=100, pred=TRUE), t1.p100) t2 <- c(c("mean"=m, "var"=v, "sd"=s, "min"=mn, "max"=mx, "n"=10), t1) expect_equal(meanProbs(x, onlyProbs=FALSE), t2) x2 <- c(x, NA_real_) setNames(rep(NA_real_, length(t1)),names(t1)) expect_equal(meanProbs(x2), setNames(rep(NA_real_, length(t1)),names(t1))) expect_equal(meanProbs(x2, onlyProbs=FALSE), setNames(rep(NA_real_, length(t2)),names(t2))) expect_equal(meanProbs(x2, na.rm=TRUE), t1) expect_equal(meanProbs(x2, onlyProbs=FALSE, na.rm=TRUE), t2) mod <- rxode2({ d/dt(intestine) <- -a * intestine d/dt(blood) <- a * intestine - b * blood }) et <- eventTable() et$add.sampling(seq(0, 10, length.out = 50)) et$add.dosing( dose = 2/24, rate = 2, strt.time = 0, nbr.doses = 10, dosing.interval = 1 ) p <- data.frame(a = 6, b = seq(0.4, 0.9, length.out = 4)) pk1 <- suppressWarnings(rxSolve(mod, p, et, cores = 1)) ci1 <- confint(pk1, "blood", mean=TRUE) # use dplyr ci2 <- pk1 |> dplyr::group_by(time) |> dplyr::reframe(eff=meanProbs(blood, c(0.025, 0.5, 0.975), na.rm=TRUE, names=FALSE), p1=c(0.025, 0.5, 0.975), Percentile=c("2.5%", "50%", "97.5%")) |> dplyr::arrange(time, p1) expect_equal(ci1$eff, ci2$eff) ci1 <- confint(pk1, "blood", mean=TRUE, pred=TRUE) ci2 <- pk1 |> dplyr::group_by(time) |> dplyr::reframe(eff=meanProbs(blood, c(0.025, 0.5, 0.975), na.rm=TRUE, names=FALSE, pred=TRUE), p1=c(0.025, 0.5, 0.975), Percentile=c("2.5%", "50%", "97.5%")) |> dplyr::arrange(time, p1) expect_equal(ci1$eff, ci2$eff) ci1 <- confint(pk1, "blood", mean=TRUE, n=100) ci2 <- pk1 |> dplyr::group_by(time) |> dplyr::reframe(eff=meanProbs(blood, c(0.025, 0.5, 0.975), na.rm=TRUE, names=FALSE, n=100), p1=c(0.025, 0.5, 0.975), Percentile=c("2.5%", "50%", "97.5%")) |> dplyr::arrange(time, p1) expect_equal(ci1$eff, ci2$eff) ci1 <- confint(pk1, "blood", mean=TRUE, pred=TRUE, n=100) ci2 <- pk1 |> dplyr::group_by(time) |> dplyr::reframe(eff=meanProbs(blood, c(0.025, 0.5, 0.975), na.rm=TRUE, names=FALSE, pred=TRUE, n=100), p1=c(0.025, 0.5, 0.975), Percentile=c("2.5%", "50%", "97.5%")) |> dplyr::arrange(time, p1) expect_equal(ci1$eff, ci2$eff) ci1 <- confint(pk1, "blood", mean=TRUE, useT=FALSE) # use dplyr ci2 <- pk1 |> dplyr::group_by(time) |> dplyr::reframe(eff=meanProbs(blood, c(0.025, 0.5, 0.975), na.rm=TRUE, names=FALSE, useT=FALSE), p1=c(0.025, 0.5, 0.975), Percentile=c("2.5%", "50%", "97.5%")) |> dplyr::arrange(time, p1) expect_equal(ci1$eff, ci2$eff) ci1 <- confint(pk1, "blood", mean=TRUE, useT=FALSE, pred=TRUE) # use dplyr ci2 <- pk1 |> dplyr::group_by(time) |> dplyr::reframe(eff=meanProbs(blood, c(0.025, 0.5, 0.975), na.rm=TRUE, names=FALSE, useT=FALSE, pred=TRUE), p1=c(0.025, 0.5, 0.975), Percentile=c("2.5%", "50%", "97.5%")) |> dplyr::arrange(time, p1) expect_equal(ci1$eff, ci2$eff) }) } })