rxTest({ # These functions are taken from TruncatedNormal for testing .rx <- loadNamespace("rxode2") lnNpr <- function(a, b) { ## computes ln(P(aa>0 I <- a > 0 if (any(I)) { pa <- pnorm(a[I], lower.tail = FALSE, log.p = TRUE) pb <- pnorm(b[I], lower.tail = FALSE, log.p = TRUE) p[I] <- pa + log1p(-exp(pb - pa)) } ## case a 2) { s <- D[I] - L[I, 1:(j - 1)]^2 %*% rep(1, j - 1) } else if (j == 2) { s <- D[I] - L[I, 1]^2 } else { s <- D[I] } s[s < 0] <- eps s <- sqrt(s) if (j > 2) { cols <- L[I, 1:(j - 1)] %*% z[1:(j - 1)] } else if (j == 2) { cols <- L[I, 1] * z[1] } else { cols <- 0 } tl <- (l[I] - cols) / s tu <- (u[I] - cols) / s pr[I] <- lnNpr(tl, tu) # find smallest marginal dimension k <- which.min(pr) # flip dimensions k-->j jk <- c(j, k) kj <- c(k, j) Sig[jk, ] <- Sig[kj, ] Sig[, jk] <- Sig[, kj] # update rows and cols of Sig L[jk, ] <- L[kj, ] # update only rows of L l[jk] <- l[kj] u[jk] <- u[kj] # update integration limits perm[jk] <- perm[kj] # keep track of permutation # construct L sequentially via Cholesky computation s <- Sig[j, j] - sum(L[j, 1:(j - 1)]^2) if (s < (-0.001)) { stop("Sigma is not positive semi-definite") } s[s < 0] <- eps L[j, j] <- sqrt(s) if (j < d) { if (j > 2) { L[(j + 1):d, j] <- (Sig[(j + 1):d, j] - L[(j + 1):d, 1:(j - 1)] %*% L[j, 1:(j - 1)]) / L[j, j] } else if (j == 2) { L[(j + 1):d, j] <- (Sig[(j + 1):d, j] - L[(j + 1):d, 1] * L[j, 1]) / L[j, j] } else if (j == 1) { L[(j + 1):d, j] <- Sig[(j + 1):d, j] / L[j, j] } } ## find mean value, z(j), of truncated normal: tl <- (l[j] - L[j, 1:j] %*% z[1:j]) / L[j, j] tu <- (u[j] - L[j, 1:j] %*% z[1:j]) / L[j, j] w <- lnNpr(tl, tu) # aids in computing expected value of trunc. normal z[j] <- (exp(-.5 * tl^2 - w) - exp(-.5 * tu^2 - w)) / sqrt(2 * pi) } return(list(L = L, l = l, u = u, perm = perm)) } gradpsi <- function(y, L, l, u) { # implements grad_psi(x) to find optimal exponential twisting; # assume scaled 'L' with zero diagonal; d <- length(u) c <- rep(0, d) x <- c mu <- c x[1:(d - 1)] <- y[1:(d - 1)] mu[1:(d - 1)] <- y[d:(2 * d - 2)] # compute now ~l and ~u c[-1] <- L[-1, ] %*% x lt <- l - mu - c ut <- u - mu - c # compute gradients avoiding catastrophic cancellation w <- lnNpr(lt, ut) pl <- exp(-0.5 * lt^2 - w) / sqrt(2 * pi) pu <- exp(-0.5 * ut^2 - w) / sqrt(2 * pi) P <- pl - pu # output the gradient dfdx <- -mu[-d] + t(t(P) %*% L[, -d]) dfdm <- mu - x + P grad <- c(dfdx, dfdm[-d]) # here compute Jacobian matrix lt[is.infinite(lt)] <- 0 ut[is.infinite(ut)] <- 0 dP <- (-P^2) + lt * pl - ut * pu # dPdm DL <- rep(dP, 1, d) * L mx <- -diag(d) + DL xx <- t(L) %*% DL mx <- mx[1:(d - 1), 1:(d - 1)] xx <- xx[1:(d - 1), 1:(d - 1)] if (d > 2) { Jac <- rbind(cbind(xx, t(mx)), cbind(mx, diag(1 + dP[1:(d - 1)]))) } else { Jac <- rbind(cbind(xx, t(mx)), cbind(mx, 1 + dP[1:(d - 1)])) dimnames(Jac) <- NULL } f <- list(grad = grad, Jac = Jac) } nleq <- function(l, u, L) { d <- length(l) x <- rep(0, 2 * d - 2) # initial point for Newton iteration err <- Inf iter <- 0 while (err > 10^-10) { f <- gradpsi(x, L, l, u) Jac <- f$Jac grad <- f$grad del <- solve(Jac, -grad) # Newton correction x <- x + del err <- sum(grad^2) iter <- iter + 1 if (iter > 100) { stop("Covariance matrix is ill-conditioned and method failed") } } return(x) } test_that("cholperm", { rxWithSeed(12, { d <- 5 mu <- 1:d ## Creating covariance matrix tmp <- matrix(rnorm(d^2), d, d) mcov <- tcrossprod(tmp, tmp) r1 <- cholperm(mcov, -(1:5), 1:5) r2 <- .rx$rxCholperm(mcov, -(1:5), 1:5) expect_equal(r1$L, r2$L) expect_equal(r1$l, r2$l) expect_equal(r1$u, r2$u) expect_equal(r1$perm, r2$perm + 1) r1 <- cholperm(mcov, 1:5, 2 * (1:5)) r2 <- .rx$rxCholperm(mcov, 1:5, 2 * 1:5) expect_equal(r1$L, r2$L) expect_equal(r1$l, r2$l) expect_equal(r1$u, r2$u) expect_equal(r1$perm, r2$perm + 1) r1 <- cholperm(mcov, -2 * (1:5), -(1:5)) r2 <- .rx$rxCholperm(mcov, -2 * (1:5), -(1:5)) expect_equal(r1$L, r2$L) expect_equal(r1$l, r2$l) expect_equal(r1$u, r2$u) expect_equal(r1$perm, r2$perm + 1) ## microbenchmark::microbenchmark(cholperm(mcov, -2 * (1:5), -(1:5)), rxCholperm(mcov, -2 * (1:5), -(1:5))) ## microbenchmark::microbenchmark(microbenchmark::cholperm(mcov, -2 * (1:5), -(1:5)), rxCholperm(mcov, -2 * (1:5), -(1:5))) }) }) test_that("gradpsi", { rxWithSeed(12, { d <- 5 mu <- 1:d ## Creating covariance matrix tmp <- matrix(rnorm(d^2), d, d) mcov <- tcrossprod(tmp, tmp) r2 <- .rx$rxCholperm(mcov, -(1:5), 1:5) d <- length(r2$l) y <- seq(0, 2 * d - 2) l <- r2$l u <- r2$u L <- r2$L r1 <- gradpsi(y, L, l, u) r2 <- .rx$rxGradpsi(y, L, l, u) expect_equal(r1$Jac, r2$Jac) expect_equal(r1$grad, r2$grad) r1 <- gradpsi(rep(1, 2 * d - 2), L, l, u) r2 <- .rx$rxGradpsi(rep(1, 2 * d - 2), L, l, u) expect_equal(r1$Jac, r2$Jac) expect_equal(r1$grad, r2$grad) r1 <- gradpsi(rep(-1, 2 * d - 2), L, l, u) r2 <- .rx$rxGradpsi(rep(-1, 2 * d - 2), L, l, u) expect_equal(r1$Jac, r2$Jac) expect_equal(r1$grad, r2$grad) ## microbenchmark::microbenchmark(gradpsi(rep(-1,2*d-2), L, l, u), .rx$rxGradpsi(rep(-1,2*d-2), L, l, u)); d <- 2 mu <- 1:d ## Creating covariance matrix tmp <- matrix(rnorm(d^2), d, d) mcov <- tcrossprod(tmp, tmp) r2 <- .rx$rxCholperm(mcov, -(1:d), 1:d) d <- length(r2$l) y <- seq(0, 2 * d - 2) l <- r2$l u <- r2$u L <- r2$L r1 <- gradpsi(rep(-1, 2 * d - 2), L, l, u) r2 <- .rx$rxGradpsi(rep(-1, 2 * d - 2), L, l, u) expect_equal(r1$Jac, r2$Jac) expect_equal(r1$grad, r2$grad) }) }) test_that("nleq", { rxWithSeed(12, { d <- 5 mu <- 1:d ## Creating covariance matrix tmp <- matrix(rnorm(d^2), d, d) mcov <- tcrossprod(tmp, tmp) r2 <- .rx$rxCholperm(mcov, -3 * (1:d), 2 * (1:d)) expect_equal(.rx$rxNleq(r2$l, r2$u, r2$L), nleq(r2$l, r2$u, r2$L)) ## microbenchmark::microbenchmark(rxNleq(r2$l, r2$u, r2$L), nleq(r2$l, r2$u, r2$L)) d <- 2 mu <- 1:d ## Creating covariance matrix tmp <- matrix(rnorm(d^2), d, d) mcov <- tcrossprod(tmp, tmp) r2 <- .rx$rxCholperm(mcov, -2 * (1:d), 3 * 1:d) expect_equal(.rx$rxNleq(r2$l, r2$u, r2$L), nleq(r2$l, r2$u, r2$L)) }) }) test_that("rxMvnrnd", { rxWithSeed(12, { d <- 5 mu <- 1:d ## Creating covariance matrix tmp <- matrix(rnorm(d^2), d, d) mcov <- tcrossprod(tmp, tmp) out <- .rx$rxCholperm(mcov, -2 * (1:5), 1:5) Lfull <- out$L l <- out$l u <- out$u D <- diag(Lfull) perm <- out$perm if (any(D < 10^-10)) { warning("Method may fail as covariance matrix is singular!") } L <- Lfull / D u <- u / D l <- l / D # rescale L <- L - diag(d) # remove diagonal # find optimal tilting parameter via non-linear equation solver xmu <- nleq(l, u, L) # nonlinear equation solver x <- xmu[1:(d - 1)] mu <- xmu[d:(2 * d - 2)] # assign saddlepoint x* and mu* fun <- function(n) { r1 <- .rx$rxMvnrnd(5, L, l, u, mu) expect_equal(length(r1$logpr), 5) expect_true(all(!duplicated(r1$logpr))) expect_equal(length(r1$Z[1, ]), 5) expect_true(all(!duplicated(r1$Z[1, ]))) } fun(2) fun(5) fun(10) }) }) })