context("Tabulation framework") test_that("summarize_row_groups works with provided funcs", { l1 <- basic_table() %>% split_cols_by("ARM") %>% split_rows_by("RACE") %>% summarize_row_groups() %>% analyze("AGE", mean) tb1 <- build_table(l1, DM) tbl_str <- toString(tb1) expect(TRUE, "succeeded") }) ## this test_that("complex layout works", { lyt <- make_big_lyt() ## ensure print method works for predata layout tab <- build_table(lyt, rawdat) tab_str <- toString(tab) ## XXX TODO this assumes we want no var label on VAR3 subtable expect_identical(dim(tab), c(28L, 4L)) expect_identical(row.names(tab), complx_lyt_rnames) tlvals <- c("Ethnicity", "Factor 2") lyt2 <- lyt %>% append_topleft(tlvals) tab2 <- build_table(lyt2, rawdat) expect_identical(top_left(tab2), tlvals) }) test_that("existing table in layout works", { thing2 <- basic_table() %>% split_cols_by("ARM") %>% ## add nested column split on SEX with value labels from gend_label split_cols_by("SEX", "Gender", labels_var = "gend_label") %>% analyze( c("AGE", "AGE"), c("Age Analysis", "Age Analysis Redux"), afun = function(x) list(mean = mean(x), median = median(x)), format = "xx.xx", table_names = c("AGE1", "AGE2") ) tab2 <- build_table(thing2, rawdat) thing3 <- basic_table() %>% split_cols_by("ARM") %>% ## add nested column split on SEX with value labels from gend_label split_cols_by("SEX", "Gender", labels_var = "gend_label") %>% split_rows_by("RACE", "Ethnicity", labels_var = "ethn_label") %>% summarize_row_groups("RACE", label_fstr = "%s (n)") %>% analyze("AGE", "Age Analysis", afun = function(x) list(mean = mean(x), median = median(x)), format = "xx.xx" ) %>% ## stack an existing table onto the layout and thus the generated table add_existing_table(tab2) tab3 <- build_table(thing3, rawdat) expect_equal(nrow(tab3), 12) tab3 }) test_that("Nested splits in column space work", { dat2 <- subset(ex_adsl, SEX %in% c("M", "F")) tbl2 <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("SEX", split_fun = drop_split_levels) %>% analyze(c("AGE", "STRATA1")) %>% build_table(dat2) mf <- matrix_form(tbl2) expect_identical( unname(mf$strings[1, , drop = TRUE]), c( "", "A: Drug X", "A: Drug X", "B: Placebo", "B: Placebo", "C: Combination", "C: Combination" ) ) expect_identical( unname(mf$display[1, , drop = TRUE]), c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE) ) }) test_that("labelkids parameter works", { yeslabellyt <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("SEX", "Gender", labels_var = "gend_label") %>% split_rows_by("RACE", "Ethnicity", labels_var = "ethn_label", child_labels = "visible") %>% summarize_row_groups("RACE", label_fstr = "%s (n)") %>% split_rows_by("FACTOR2", "Factor2", split_fun = remove_split_levels("C"), labels_var = "fac2_label", child_labels = "visible" ) %>% analyze( "AGE", "Age Analysis", afun = function(x) list(mean = mean(x), median = median(x)), format = "xx.xx", show_labels = "visible" ) tabyes <- build_table(yeslabellyt, rawdat) expect_identical( row.names(tabyes)[1:4], c("Caucasian", "Caucasian (n)", "Level A", "Age Analysis") ) misslabellyt <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("SEX", "Gender", labels_var = "gend_label") %>% split_rows_by("RACE", "Ethnicity", labels_var = "ethn_label", child_labels = "default") %>% summarize_row_groups("RACE", label_fstr = "%s (n)") %>% split_rows_by("FACTOR2", "Factor2", split_fun = remove_split_levels("C"), labels_var = "fac2_label", child_labels = "default" ) %>% analyze( "AGE", "Age Analysis", afun = function(x) list(mean = mean(x), median = median(x)), format = "xx.xx" ) tabmiss <- build_table(misslabellyt, rawdat) expect_identical( row.names(tabmiss)[1:4], c("Caucasian (n)", "Level A", "mean", "median") ) nolabellyt <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("SEX", "Gender", labels_var = "gend_label") %>% split_rows_by("RACE", "Ethnicity", labels_var = "ethn_label", child_labels = "hidden") %>% summarize_row_groups("RACE", label_fstr = "%s (n)") %>% split_rows_by("FACTOR2", "Factor2", split_fun = remove_split_levels("C"), labels_var = "fac2_label", child_labels = "hidden" ) %>% analyze( "AGE", "Age Analysis", afun = function(x) list(mean = mean(x), median = median(x)), format = "xx.xx", show_labels = "hidden" ) tabno <- build_table(nolabellyt, rawdat) expect_identical( row.names(tabno)[1:4], c("Caucasian (n)", "mean", "median", "mean") ) mixedlyt2 <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("SEX", "Gender", labels_var = "gend_label") %>% split_rows_by("RACE", "Ethnicity", labels_var = "ethn_label", child_labels = "hidden") %>% summarize_row_groups("RACE", label_fstr = "%s (n)") %>% split_rows_by("FACTOR2", "Factor2", split_fun = remove_split_levels("C"), labels_var = "fac2_label", child_labels = "hidden" ) %>% analyze( "AGE", "Age Analysis", afun = function(x) list(mean = mean(x), median = median(x)), format = "xx.xx", show_labels = "visible" ) tabmixed2 <- build_table(mixedlyt2, rawdat) expect_identical( row.names(tabmixed2)[1:4], c("Caucasian (n)", "Age Analysis", "mean", "median") ) mixedlyt <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("SEX", "Gender", labels_var = "gend_label") %>% split_rows_by("RACE", "Ethnicity", labels_var = "ethn_label", child_labels = "visible") %>% summarize_row_groups("RACE", label_fstr = "%s (n)") %>% split_rows_by("FACTOR2", "Factor2", split_fun = remove_split_levels("C"), labels_var = "fac2_label", child_labels = "visible" ) %>% analyze( "AGE", "Age Analysis", afun = function(x) list(mean = mean(x), median = median(x)), format = "xx.xx", show_labels = "hidden" ) tabmixed <- build_table(mixedlyt, rawdat) expect_identical( row.names(tabmixed)[1:4], c("Caucasian", "Caucasian (n)", "Level A", "mean") ) varshowlyt <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("SEX", "Gender", labels_var = "gend_label") %>% split_rows_by("RACE", "Ethnicity", labels_var = "ethn_label") %>% summarize_row_groups("RACE", label_fstr = "%s (n)") %>% split_rows_by("FACTOR2", "Factor2", split_fun = remove_split_levels("C"), labels_var = "fac2_label", label_pos = "visible" ) %>% analyze( "AGE", "Age Analysis", afun = function(x) list(mean = mean(x), median = median(x)), format = "xx.xx", show_labels = "hidden" ) varshowtab <- build_table(varshowlyt, rawdat) expect_identical( row.names(varshowtab)[1:4], c("Caucasian (n)", "Factor2", "Level A", "mean") ) }) test_that("ref_group comparisons work", { blthing <- basic_table() %>% split_cols_by("ARM", ref_group = "ARM1") %>% analyze("AGE", show_labels = "hidden") %>% analyze("AGE", refcompmean, show_labels = "hidden", table_names = "AGE2") ## function(x) list(mean = mean(x))) bltab <- build_table(blthing, rawdat) expect_identical(dim(bltab), c(2L, 2L)) expect_null(bltab[2, 1, drop = TRUE]) c1 <- bltab[1, 1, drop = TRUE] c2 <- bltab[1, 2, drop = TRUE] c3 <- bltab[2, 2, drop = TRUE] expect_equivalent(c2 - c1, c3) lyt <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("SEX", ref_group = "F") %>% analyze("AGE", mean, show_labels = "hidden") %>% analyze("AGE", refcompmean, show_labels = "hidden", table_names = "AGE2a" ) %>% split_rows_by("RACE", nested = FALSE, split_fun = drop_split_levels ) %>% analyze("AGE", mean, show_labels = "hidden") %>% analyze("AGE", refcompmean, show_labels = "hidden", table_names = "AGE2b") bltab2 <- build_table(lyt, DM) d1 <- bltab2[4, 1, drop = TRUE] d2 <- bltab2[4, 2, drop = TRUE] d3 <- bltab2[5, 2, drop = TRUE] expect_equivalent(d2 - d1, d3) d4 <- bltab2[1, 3, drop = TRUE] d5 <- bltab2[1, 4, drop = TRUE] d6 <- bltab2[2, 4, drop = TRUE] expect_equivalent(d5 - d4, d6) d7 <- bltab2[4, 3, drop = TRUE] d8 <- bltab2[4, 4, drop = TRUE] d9 <- bltab2[5, 4, drop = TRUE] expect_equivalent(d8 - d7, d9) ## with combo levels combodf <- tribble( ~valname, ~label, ~levelcombo, ~exargs, "A_", "Arm 1", c("A: Drug X"), list(), "B_C", "Arms B & C", c("B: Placebo", "C: Combination"), list() ) l3 <- basic_table(show_colcounts = TRUE) %>% split_cols_by( "ARM", split_fun = add_combo_levels(combodf, keep_levels = c("A_", "B_C")), ref_group = "A_" ) %>% analyze(c("AGE", "AGE"), afun = list(mean, refcompmean), show_labels = "hidden", table_names = c("AGE1", "AGE2") ) bltab3 <- build_table(l3, DM) d10 <- bltab3[1, 1, drop = TRUE] d11 <- bltab3[1, 2, drop = TRUE] d12 <- bltab3[2, 2, drop = TRUE] expect_null(cell_values(bltab3, "AGE2", c("ARM", "A_"))[[1]]) expect_identical(d12, d11 - d10) }) test_that("missing vars caught", { misscol <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("SX", "Gender") %>% analyze("AGE", "Age Analysis", afun = function(x) list(mean = mean(x), median = median(x)), format = "xx.xx" ) expect_error( build_table(misscol, rawdat), "Split variable [[]SX[]] not found in data being tabulated." ) missrsplit <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("SEX", "gend_label") %>% split_rows_by("RACER", "ethn_label") %>% analyze("AGE", "Age Analysis", afun = function(x) list(mean = mean(x), median = median(x)), format = "xx.xx" ) expect_error( build_table(missrsplit, rawdat), "Split variable [[]RACER[]] not found in data being tabulated." ) missrsplit <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("SEX", "gend_label") %>% split_rows_by("RACE", "ethnNA_label") %>% analyze("AGE", "Age Analysis", afun = function(x) list(mean = mean(x), median = median(x)), format = "xx.xx" ) expect_error( build_table(missrsplit, rawdat), "Value label variable [[]ethnNA_label[]] not found in data being tabulated." ) missavar <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("SEX", labels_var = "gend_label") %>% split_rows_by("RACE", labels_var = "ethn_label") %>% analyze("AGGE", "Age Analysis", afun = function(x) list(mean = mean(x), median = median(x)), format = "xx.xx" ) expect_error( build_table(missavar, rawdat), ".*variable[(]s[)] [[]AGGE[]] not present in data. [(]AnalyzeVarSplit[)].*" ) }) # https://github.com/insightsengineering/rtables/issues/329 test_that("error localization works", { afun <- function(x, .spl_context) { if (NROW(.spl_context) > 0 && .spl_context[NROW(.spl_context), "value", drop = TRUE] == "WHITE") { stop("error for white statistics") } in_rows(myrow = 5) } lyt <- basic_table() %>% split_rows_by("ARM") %>% split_rows_by("RACE") %>% analyze("BMRKR1", afun = afun) # nolint start expect_error( build_table(lyt, DM), "Error[^)]*analysis function \\(var[^B]*BMRKR1\\): error for white statistics.*ARM\\[A: Drug X\\]->RACE\\[WHITE\\]" ) # nolint end cfun <- function(df, labelstr) { if (labelstr == "B: Placebo") { stop("placebos are bad") } in_rows(val = 5) } lyt2 <- basic_table() %>% split_rows_by("ARM") %>% summarize_row_groups(cfun = cfun) %>% split_rows_by("RACE") %>% analyze("BMRKR1", afun = mean) expect_error( build_table(lyt2, DM), "Error in content.*function: placebos are bad.*path: ARM\\[B: Placebo\\]" ) splfun <- function(df, spl, vals = NULL, labels = NULL, trim = FALSE) { stop("oopsie daisy") } lyt3 <- basic_table() %>% split_rows_by("ARM") %>% summarize_row_groups() %>% split_rows_by("RACE", split_fun = splfun) %>% analyze("BMRKR1", afun = mean) # nolint start expect_error( build_table(lyt3, DM), "Error.*custom split function: oopsie daisy.*VarLevelSplit \\(RACE\\).*path: ARM\\[A: Drug X\\]" ) # nolint end }) test_that("cfun args", { # first arg df cfun1 <- function(df, labelstr, .N_col, .N_total) { stopifnot(is(df, "data.frame")) in_rows( rcell(nrow(df) * c(1, 1 / .N_col), format = "xx (xx.xx%)"), .names = labelstr ) } lyt <- basic_table() %>% split_cols_by("ARM") %>% split_rows_by("SEX") %>% summarize_row_groups(cfun = cfun1) tbl <- build_table(lyt, rawdat) capture.output(prout <- print(tbl)) expect_identical(prout, tbl) # first arg x cfun2 <- function(x, labelstr) { in_rows( c(mean(x, trim = 0.2), 0.2), .formats = "xx.x (xx.x%)", .labels = sprintf( "%s (Trimmed mean and trim %%)", labelstr ) ) } lyt <- basic_table() %>% split_cols_by("ARM") %>% split_rows_by("SEX") %>% summarize_row_groups("AGE", cfun = cfun2) tbl <- build_table(lyt, rawdat) capture.output(prout <- print(tbl)) expect_identical(prout, tbl) }) ## regression test for automatically not-nesting ## when a non-analyze comes after an analyze test_that("split under analyze", { dontnest <- basic_table(show_colcounts = TRUE) %>% split_cols_by(var = "ARM") %>% analyze("AGE") %>% split_rows_by("VAR3") %>% analyze("AGE") %>% build_table(rawdat) expect_equal(nrow(dontnest), 5) }) test_that("label_var works as expected", { yeslblslyt <- basic_table(show_colcounts = TRUE) %>% split_cols_by(var = "ARM") %>% split_rows_by("SEX", labels_var = "gend_label") %>% analyze("AGE") yeslbls <- build_table(yeslblslyt, rawdat) expect_identical(row.names(yeslbls)[1], "Male") nolbls <- basic_table(show_colcounts = TRUE) %>% split_cols_by(var = "ARM") %>% split_rows_by("SEX") %>% analyze("AGE") %>% build_table(rawdat) expect_identical(row.names(nolbls)[1], "M") ## create bad label col rawdat2 <- rawdat rawdat2$gend_label[5] <- "XXXXX" ## nolint start ## test check for label-value concordance. expect_error( build_table(yeslblslyt, rawdat2), "There does not appear to be a 1-1 correspondence between values in split var \\[SEX\\] and label var \\[gend_label\\]" ) ## nolint end }) test_that("factors with unobserved levels work as expected", { ## default behavior is that empty levels are NOT dropped ## rows lyt <- basic_table() %>% split_rows_by("SEX") %>% analyze("AGE") tab <- build_table(lyt, DM) expect_identical(dim(tab), c(8L, 1L)) ## cols lyt2 <- basic_table() %>% split_cols_by("SEX") %>% analyze("AGE") tab2 <- build_table(lyt2, DM) expect_identical(dim(tab2), c(1L, 4L)) }) test_that(".N_row argument in afun works correctly", { lyt <- basic_table() %>% split_cols_by("ARM") %>% split_rows_by("SEX") %>% analyze("AGE", afun = function(x, .N_row) .N_row) tab <- build_table(lyt, rawdat) rows <- collect_leaves(tab) names(rows) <- substr(names(rows), 1, 1) ans <- tapply(rawdat$AGE, rawdat$SEX, function(x) rep(length(x), 2)) res <- vapply(names(rows), function(nm) isTRUE(all.equal(unname(unlist(row_values(rows[[nm]]))), ans[[nm]])), NA) expect_true(all(res)) }) test_that("extra args works", { oldop <- options(warn = 2) on.exit(options(oldop)) colfuns <- list( function(x, add = 0, na.rm = TRUE) { rcell(mean(c(NA, x), na.rm = na.rm) + add, format = "xx.x") }, function(x, cutoff = .5, na.rm = TRUE) { rcell(sum(c(NA, x > cutoff), na.rm = na.rm), format = "xx") } ) l <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by_multivar(c("VALUE", "PCTDIFF")) %>% analyze_colvars(afun = colfuns) l tbl_noex <- build_table(l, rawdat2) ## one for each different function in colfuns, assigned correctly l2 <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by_multivar(c("VALUE", "PCTDIFF")) %>% analyze_colvars(afun = colfuns, extra_args = list(list(add = 5), list(cutoff = 100))) tbl_ex <- build_table(l2, rawdat2) vals_noex <- row_values(tree_children(tbl_noex)[[1]]) vals_ex <- row_values(tree_children(tbl_ex)[[1]]) expect_identical( unlist(vals_noex[c(1, 3)]) + 5, unlist(vals_ex[c(1, 3)]) ) truevals <- tapply(rawdat2$PCTDIFF, rawdat2$ARM, function(x) sum(x > 100, na.rm = TRUE), simplify = FALSE ) expect_equal( unname(unlist(truevals)), unname(unlist(vals_ex[c(2, 4)])) ) vals_noex <- row_values(tree_children(tbl_noex)[[1]]) vals_ex <- row_values(tree_children(tbl_ex)[[1]]) expect_identical( unlist(vals_noex[c(1, 3)]) + 5, unlist(vals_ex[c(1, 3)]) ) truevals <- tapply(rawdat2$PCTDIFF, rawdat2$ARM, function(x) sum(x > 100, na.rm = TRUE), simplify = FALSE ) expect_equal( unname(unlist(truevals)), unname(unlist(vals_ex[c(2, 4)])) ) ## single argument passed to all functions l2b <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by_multivar(c("VALUE", "PCTDIFF")) %>% analyze_colvars(afun = colfuns, extra_args = list(na.rm = FALSE)) tbl_ex2 <- build_table(l2b, rawdat2) expect_true(all(is.na(unlist(rtables:::row_values(tree_children(tbl_ex2)[[1]]))))) ## one argument for a single function. lyt <- basic_table() %>% analyze("Sepal.Length", afun = function(x, a) { in_rows(mean_a = rcell(mean(x) + a, format = "xx")) }, extra_args = list(a = 1)) tbl <- build_table(lyt, iris) expect_equal(tbl[1, 1, drop = TRUE], mean(iris$Sepal.Length) + 1) ## two arguments for a single function lyt2 <- basic_table() %>% analyze("Sepal.Length", afun = function(x, a, b) { in_rows(mean_a = rcell(mean(x) + a + b, format = "xx")) }, extra_args = list(a = 1, b = 3)) tbl2 <- build_table(lyt2, iris) expect_equal(tbl2[1, 1, drop = TRUE], mean(iris$Sepal.Length) + 1 + 3) }) test_that("Colcounts work correctly", { lyt1 <- basic_table(show_colcounts = TRUE) %>% analyze("AGE") tbl1 <- build_table(lyt1, DM) expect_identical(col_counts(tbl1), nrow(DM)) lyt2 <- lyt1 %>% split_cols_by("ARM") tbl2 <- build_table(lyt2, DM) expect_identical( col_counts(tbl2), as.integer(table(DM$ARM)) ) DMchar <- DM DMchar$ARM <- as.character(DM$ARM) tbl2chr <- build_table(lyt2, DMchar) tbl3 <- build_table(lyt2, DM, col_counts = c(500L, NA, NA)) expect_identical( col_counts(tbl3), c(500L, as.integer(table(DM$ARM))[2:3]) ) expect_error(build_table(lyt2, DMchar, col_counts = c(500L, NA, NA))) expect_error(build_table(lyt2, DM, col_counts = c(20L, 40L))) tbl4 <- basic_table( show_colcounts = TRUE, colcount_format = "xx (xx%)" ) %>% split_cols_by("ARM") %>% build_table(DM) mf_tbl4_colcounts <- matrix_form(tbl4)$strings[2, ] expect_identical(mf_tbl4_colcounts, c("", "121 (100%)", "106 (100%)", "129 (100%)")) ## setting col_counts in build_table turns on visibility for leaf col counts lyt5 <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("STRATA1") %>% analyze("AGE") tbl5 <- build_table(lyt5, ex_adsl, col_counts = 1:9) mpf5 <- matrix_form(tbl5) expect_identical(mf_strings(mpf5)[3, 2], "(N=1)") }) first_cont_rowvals <- function(tt) { row_values( tree_children( content_table( tree_children(tt)[[1]] ) )[[1]] ) } test_that("content extra args for summarize_row_groups works", { sfun <- function(x, labelstr, .N_col, a = 5, b = 6, c = 7) { in_rows( c(a, b), .formats = "xx - xx", .labels = labelstr ) } ## specify single set of args for all columns l <- basic_table() %>% split_cols_by("ARM") %>% split_rows_by("SEX") %>% summarize_row_groups( cfun = sfun, extra_args = list(a = 9) ) tbl1 <- build_table(l, rawdat) expect_identical( first_cont_rowvals(tbl1), list( ARM1 = c(9, 6), ARM2 = c(9, 6) ) ) ## specify different arg for each column l2 <- basic_table() %>% split_cols_by("ARM") %>% split_rows_by("SEX") %>% summarize_row_groups( cfun = sfun, extra_args = list( list(a = 9), list(b = 3) ) ) tbl2 <- build_table(l2, rawdat) expect_identical( first_cont_rowvals(tbl2), list( ARM1 = c(9, 6), ARM2 = c(5, 3) ) ) ## specify arg for only one col l3 <- basic_table() %>% split_cols_by("ARM") %>% split_rows_by("SEX") %>% summarize_row_groups( cfun = sfun, extra_args = list(list(a = 9)) ) tbl3 <- build_table(l3, rawdat) expect_identical( first_cont_rowvals(tbl3), list( ARM1 = c(9, 6), ARM2 = c(5, 6) ) ) ## works on root split l4 <- basic_table() %>% split_cols_by("ARM") %>% summarize_row_groups( cfun = sfun, extra_args = list(a = 9) ) tbl4 <- build_table(l4, rawdat) expect_identical( row_values(tree_children(content_table(tbl4))[[1]]), list( ARM1 = c(9, 6), ARM2 = c(9, 6) ) ) }) test_that(".df_row analysis function argument works", { afun <- function(x, labelstr = "", .N_col, .df_row) { rcell(c(nrow(.df_row), .N_col), format = "(xx.x, xx.x)") } l <- basic_table() %>% split_cols_by("ARM") %>% split_rows_by("SEX") %>% analyze("AGE", afun) tbl <- build_table(l, rawdat) rws <- collect_leaves(tbl, add.labrows = FALSE) nmale <- sum(rawdat$SEX == "M") nfemale <- sum(rawdat$SEX == "F") narm1 <- sum(rawdat$ARM == "ARM1") narm2 <- sum(rawdat$ARM == "ARM2") expect_identical( unname(lapply(rws, row_values)), list( list( ARM1 = c(nmale, narm1), ARM2 = c(nmale, narm2) ), list( ARM1 = c(nfemale, narm1), ARM2 = c(nfemale, narm2) ) ) ) }) test_that("analysis function arguments work with NA rows in data", { afun <- function(x, .df_row, ...) { list( "number of rows in .df_row" = nrow(.df_row), "length of x" = length(x) ) } df <- data.frame( a_var = factor(c("a", NA, "b", "b", "a", "a", "b", "c", "a", NA)), b_var = factor(c(NA, NA, "x", "x", "y", "x", "x", "y", "x", NA)) ) l <- basic_table() %>% add_overall_col("all pts") %>% split_rows_by("a_var") %>% analyze("b_var", afun = afun) tbl <- build_table(l, df) rws <- collect_leaves(tbl, add.labrows = FALSE) na <- sum(!is.na(df$a_var) & df$a_var == "a") nb <- sum(!is.na(df$a_var) & df$a_var == "b") nc <- sum(!is.na(df$a_var) & df$a_var == "c") na_x <- length(df$b_var[!is.na(df$a_var) & df$a_var == "a" & !is.na(df$b_var)]) nb_x <- length(df$b_var[!is.na(df$a_var) & df$a_var == "b" & !is.na(df$b_var)]) nc_x <- length(df$b_var[!is.na(df$a_var) & df$a_var == "c" & !is.na(df$b_var)]) expect_identical( unlist(lapply(rws, row_values), use.names = FALSE), c(na, na_x, nb, nb_x, nc, nc_x) ) }) test_that("analyze_colvars inclNAs works", { ## inclNAs test <- data.frame( a = c(1, 2), b = c(1, NA) ) l <- basic_table() %>% split_cols_by_multivar(c("a", "b")) %>% analyze_colvars(afun = length, inclNAs = TRUE) # We expect: ans <- lapply(test, length) # a b # 2 2 # But we get: tab <- build_table(l, test) res1 <- cell_values(tab) expect_equal(ans, res1) l2 <- basic_table() %>% split_cols_by_multivar(c("a", "b")) %>% analyze_colvars(afun = length, inclNAs = FALSE) ans2 <- lapply(test, function(x) sum(!is.na(x))) tab2 <- build_table(l2, test) res2 <- cell_values(tab2) expect_equal(ans2, res2) }) test_that("analyze_colvars works generally", { op <- options(warn = 2) on.exit(options(op)) test <- data.frame( a = 1, b = 2, c = 3, d = 4, e = 5 ) l1 <- basic_table() %>% split_cols_by_multivar(c("a", "b", "c", "d")) %>% analyze_colvars(afun = identity) tab1 <- build_table(l1, test) l2 <- basic_table() %>% split_cols_by_multivar(c("a", "b", "c", "d", "e")) %>% analyze_colvars(afun = identity) tab2 <- build_table(l2, test) colfuns <- list( function(x, labelstr) in_rows(summary = 5, .labels = "My Summary Row"), function(x, labelstr) 6, function(x, labelstr) 7, function(x, labelstr) 8 ) l3 <- basic_table() %>% split_cols_by_multivar(c("a", "b", "c", "d")) %>% summarize_row_groups(cfun = colfuns, format = "xx") %>% analyze_colvars(afun = identity) tab3 <- build_table(l3, test) expect_identical( cell_values(content_table(tab3)), list(a = 5, b = 6, c = 7, d = 8) ) expect_identical( obj_label(collect_leaves(tab3, TRUE, TRUE)[[1]]), c(summary = "My Summary Row") ) l4 <- basic_table() %>% split_cols_by_multivar(c("a", "b", "c", "d")) %>% summarize_row_groups() %>% analyze_colvars(afun = identity) tab4 <- build_table(l4, test) ## this broke before due to formatting missmatches toString(tab4) rws4 <- collect_leaves(tab4, TRUE, TRUE) expect_identical(obj_format(rws4[[1]]), "xx (xx.x%)") expect_identical(obj_format(rws4[[2]]), NULL) l5 <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by_multivar(c("AGE", "BMRKR1")) %>% split_rows_by("RACE") %>% summarize_row_groups( cfun = list( function(x, labelstr) "first fun", function(x, labelstr) "second fun" ), format = "xx" ) tab5 <- build_table(l5, DM) toString(tab5) rws5 <- collect_leaves(tab5, TRUE, TRUE) expect( all(vapply(rws5, function(x) identical(x, rws5[[1]]), NA)), "Multiple content functions didn't recycle properly in nested context" ) expect_identical( unname(cell_values(tab5)[[1]]), rep(list("first fun", "second fun"), length.out = ncol(tab5)) ) ## single column in split_cols_by_multivar and analyze_colvars one_col_lyt <- basic_table() %>% split_cols_by_multivar(vars = "Sepal.Width") %>% analyze_colvars(afun = mean) one_col_tbl <- build_table(one_col_lyt, iris) expect_identical( cell_values(one_col_tbl), list(Sepal.Width = mean(iris$Sepal.Width)) ) # na_str argument works test$d <- NA l2 <- basic_table() %>% split_cols_by_multivar(c("a", "b", "c", "d")) %>% analyze_colvars(afun = mean, na_str = "no data") tab2 <- build_table(l2, test) expect_identical( toString(tab2[1, 4]), " d \n——————————————\nmean no data\n" ) }) test_that("alt_counts_df works", { minidm <- DM[1, ] lyt <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM") %>% split_rows_by("SEX") %>% summarize_row_groups() %>% analyze("AGE") tbl <- build_table(lyt, DM, minidm) ## this inherently checks both that the correct counts (0, 1, 0) are ## retrieved and that they propogate to the summary functions expect_identical( list( "A: Drug X" = c(70, Inf), ## 70/0 "B: Placebo" = c(56, 56), ## 56/1 "C: Combination" = c(61, Inf) ), ## 61/0 cell_values(tbl[1, ]) ) ## breaks (with useful message) when given incompatible alt_counts_df expect_error(build_table(lyt, DM, iris), "Offending column subset expression") }) test_that("deeply nested and uneven column layouts work", { lyt <- basic_table(show_colcounts = TRUE) %>% split_cols_by(var = "ARM") %>% split_cols_by("STRATA1") %>% split_cols_by("STRATA2") %>% add_overall_col("All Patients") %>% analyze("AGE") tbl <- build_table(lyt, ex_adsl) ## printing machinery works str <- toString(tbl) expect_identical(ncol(tbl), 19L) lyt2 <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM") %>% split_cols_by("STRATA1") %>% split_cols_by("STRATA2", nested = FALSE) %>% add_overall_col("All Patients") %>% analyze("AGE") tbl2 <- build_table(lyt2, ex_adsl) ## printing machinery works str <- toString(tbl2) expect_identical(ncol(tbl2), 12L) }) test_that("topleft label position works", { lyt <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM") %>% ## add nested column split on SEX with value lables from gend_label split_cols_by("SEX", "Gender", labels_var = "gend_label") %>% ## No row splits have been introduced, so this adds ## a root split and puts summary content on it labelled Overall (N) ## add_colby_total(label = "All") %>% ## summarize_row_groups(label = "Overall (N)", format = "(N=xx)") %>% ## add a new subtable that splits on RACE, value labels from ethn_label split_rows_by("RACE", "Ethnicity", labels_var = "ethn_label", label_pos = "topleft") %>% summarize_row_groups("RACE", label_fstr = "%s (n)") %>% ## ## Add nested row split within Race categories for FACTOR2 ## using a split function that excludes level C ## value labels from fac2_label split_rows_by("FACTOR2", "Factor2", split_fun = remove_split_levels("C"), labels_var = "fac2_label", label_pos = "topleft" ) %>% ## Add count summary within FACTOR2 categories summarize_row_groups("FACTOR2") %>% ## Add analysis/data rows by analyzing AGE variable ## Note afun is a function that returns 2 values in a named list ## this will create 2 data rows analyze("AGE", "Age Analysis", afun = function(x) list(mean = mean(x), median = median(x)), format = "xx.xx") tab <- build_table(lyt, rawdat) expect_identical( c("Ethnicity", " Factor2"), top_left(tab) ) expect_identical( 14L, nrow(tab) ) ## https://github.com/insightsengineering/rtables/issues/657 tab2 <- basic_table() %>% split_cols_by("ARM") %>% split_rows_by("RACE", split_fun = drop_split_levels, split_label = "RACE", label_pos = "hidden", page_by = TRUE) %>% split_rows_by("STRATA1", split_fun = drop_split_levels, split_label = "Strata", label_pos = "topleft") %>% split_rows_by("SEX", split_fun = drop_split_levels, split_label = "Gender", label_pos = "topleft") %>% analyze("AGE", mean, var_labels = "Age", format = "xx.xx") %>% build_table(DM) ptab <- paginate_table(tab2) expect_identical( top_left(ptab[[1]]), c("Strata", " Gender") ) ## https://github.com/insightsengineering/rtables/issues/651 lyt2 <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM") %>% split_rows_by("SEX", split_fun = drop_split_levels, page_by = TRUE) %>% analyze("AGE") expect_error(build_table(lyt2, DM[0, ]), "Page-by split resulted in zero") lyt3 <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM") %>% split_rows_by("SEX", split_fun = drop_split_levels, page_by = TRUE) %>% split_rows_by("COUNTRY", split_fun = drop_split_levels, page_by = TRUE) %>% analyze("AGE") baddm <- DM baddm$COUNTRY <- NA_character_ ## brittle test because I couldn't figure out how to get the regex to handle newlines and check both the path ## part and primary message part error_msg <- paste0( "Page-by split resulted in zero pages (no observed values of split variable?). ", "\n\tsplit: VarLevelSplit (COUNTRY)\n\toccured at path: SEX[F]\n" ) expect_error(build_table(lyt3, baddm), error_msg, fixed = TRUE) # Similar error if the problematic split is done on alt_counts_df (related to #651) lyt4 <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM") %>% split_rows_by("SEX", split_fun = drop_split_levels, page_by = TRUE) %>% split_rows_by("COUNTRY", split_fun = drop_split_levels, page_by = TRUE) %>% analyze("AGE", afun = function(x, .alt_df) mean(x)) error_msg2 <- paste0( "Following error encountered in splitting alt_counts_df: ", error_msg ) expect_error(build_table(lyt4, DM, alt_counts_df = baddm), error_msg2, fixed = TRUE) }) test_that(".spl_context works in content and analysis functions", { ageglobmean <- mean(DM$AGE) cfun <- function(df, labelstr, .spl_context) { stopifnot("A: Drug X.M" %in% names(.spl_context)) lastrow <- .spl_context[nrow(.spl_context) - 1, ] in_rows(c(nrow(df), lastrow$cur_col_n), .names = labelstr, .labels = sprintf( "%s (%d)", labelstr, nrow(lastrow$full_parent_df[[1]]) ), .formats = "xx / xx" ) } afun <- function(x, .spl_context) { stopifnot("A: Drug X.M" %in% names(.spl_context)) ## this will break if the root 'split' row isn't there stopifnot(nrow(.spl_context$full_parent_df[[1]]) == nrow(DM)) lastrow <- .spl_context[nrow(.spl_context), ] in_rows(c(sum(x >= ageglobmean), lastrow$cur_col_n), .names = "age_analysis", .labels = sprintf( "counts (out of %d)", nrow(lastrow$full_parent_df[[1]]) ), .formats = "xx / xx" ) } lyt <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by("SEX", split_fun = keep_split_levels(c("M", "F"))) %>% split_rows_by("COUNTRY", split_fun = keep_split_levels(c("CHN", "USA"))) %>% summarize_row_groups() %>% split_rows_by("STRATA1") %>% summarize_row_groups(cfun = cfun) %>% analyze("AGE", afun = afun) tab <- build_table(lyt, DM) strmat <- matrix_form(tab)$strings rwcount4 <- as.integer(gsub("[^0-9]", "", strmat[4, 1])) crowvals <- cell_values(tab, c("COUNTRY", "CHN", "@content")) expect_equal( rwcount4, sum(sapply( crowvals, `[[`, 1 )) ) expect_equal( crowvals[[1]][[1]], cell_values(tab, c("COUNTRY", "CHN", "STRATA1", "A", "@content"))[[1]][[2]] ) expect_equal( unname(sapply( cell_values(tab, c("COUNTRY", "USA", "STRATA1", "B", "@content")), `[[`, 1L )), unname(sapply( cell_values(tab, c("COUNTRY", "USA", "STRATA1", "B", "AGE", "age_analysis")), `[[`, 2L )) ) }) test_that("cut functions work", { ctnames <- c("young", "medium", "old") ## split_cols_by_cuts l <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by_cuts("AGE", split_label = "Age", cuts = c(0, 25, 35, 1000), cutlabels = ctnames ) %>% analyze(c("BMRKR2", "STRATA2")) %>% append_topleft("counts") tbl <- build_table(l, ex_adsl) chkvals <- cell_values(tbl, c("BMRKR2", "LOW"), c("ARM", "A: Drug X")) expect_identical( unname(unlist(chkvals)), c( nrow(subset(ex_adsl, ARM == "A: Drug X" & BMRKR2 == "LOW" & AGE <= 25)), nrow(subset(ex_adsl, ARM == "A: Drug X" & BMRKR2 == "LOW" & AGE > 25 & AGE <= 35)), nrow(subset(ex_adsl, ARM == "A: Drug X" & BMRKR2 == "LOW" & AGE > 35)) ) ) mf <- matrix_form(tbl) expect_identical( mf$strings[2, , drop = TRUE], c("counts", rep(ctnames, 3)) ) lcm <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by_cuts("AGE", split_label = "Age", cuts = c(0, 25, 35, 1000), cutlabels = c("young", "young+medium", "all"), cumulative = TRUE ) %>% analyze(c("BMRKR2", "STRATA2")) %>% append_topleft("counts") tblcm <- build_table(lcm, ex_adsl) medpth <- c("BMRKR2", "MEDIUM") bpth <- c("ARM", "B: Placebo") expect_identical( cumsum(unname(unlist(cell_values(tbl, medpth, bpth)))), unname(unlist(cell_values(tblcm, medpth, bpth))) ) ## split_rows_by_cuts l2 <- basic_table() %>% split_cols_by("ARM") %>% split_rows_by_cuts("AGE", split_label = "Age", cuts = c(0, 25, 35, 1000), cutlabels = ctnames ) %>% analyze("BMRKR2") %>% append_topleft("counts") tbl2 <- build_table(l2, ex_adsl) mf2 <- matrix_form(tbl2) expect_identical( mf2$strings[c(2, 6, 10), 1, drop = TRUE], ctnames ) l2cm <- basic_table() %>% split_cols_by("ARM") %>% split_rows_by_cuts("AGE", split_label = "Age", cuts = c(0, 25, 35, 1000), cutlabels = ctnames, cumulative = TRUE ) %>% analyze("BMRKR2") %>% append_topleft("counts") tbl2cm <- build_table(l2cm, ex_adsl) medlow <- c("AGE", "young", "BMRKR2", "HIGH") cpth <- c("ARM", "C: Combination") getvals <- function(tt) { sapply( ctnames, function(pth) { unname(unlist(cell_values(tt, c("AGE", pth, "BMRKR2", "HIGH"), cpth))) } ) } expect_identical( getvals(tbl2cm), cumsum(getvals(tbl2)) ) # split_cols_by_quartiles l3 <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by_cutfun("AGE") %>% ## (quartiles("AGE", split_label = "Age") %>% analyze("BMRKR2") %>% append_topleft("counts") tbl3 <- build_table(l3, ex_adsl) l3b <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by_cuts("AGE", cuts = rtables:::qtile_cuts(ex_adsl$AGE)) %>% analyze("BMRKR2") %>% append_topleft("counts") tbl3b <- build_table(l3b, ex_adsl) expect_identical(tbl3, tbl3b) l3c <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by_quartiles("AGE") %>% analyze("BMRKR2") %>% append_topleft("counts") tbl3c <- build_table(l3c, ex_adsl) expect_identical( unname(unlist(cell_values(tbl3))), unname(unlist(cell_values(tbl3c))) ) l3c_cm <- basic_table() %>% split_cols_by("ARM") %>% split_cols_by_quartiles("AGE", cumulative = TRUE) %>% analyze("BMRKR2") %>% append_topleft("counts") tbl3c_cm <- build_table(l3c_cm, ex_adsl) # split_rows_by_quartiles l4 <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM") %>% split_rows_by_quartiles("AGE", split_label = "Age") %>% analyze("BMRKR2") %>% append_topleft(c("Age Quartiles", " Counts BMRKR2")) tbl4 <- build_table(l4, ex_adsl) cvs4 <- unlist(cell_values(tbl4)) valslst4 <- unlist(lapply(1:3, function(i) lapply(cvs4, function(lst) lst[i]))) names(valslst4) <- gsub("^(.*)\\.BMRKR2\\.(.*)$", "\\2.\\1", names(valslst4)) valslst3 <- unlist(cell_values(tbl3c)) expect_identical( valslst3, valslst4[names(valslst3)] ) l4cm <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM") %>% split_rows_by_quartiles("AGE", split_label = "Age", cumulative = TRUE) %>% analyze("BMRKR2") %>% append_topleft(c("Age Cumulative Quartiles", " Counts BMRKR2")) tbl4cm <- build_table(l4cm, ex_adsl) cvs4cm <- unlist(cell_values(tbl4cm)) valslst4cm <- unlist(lapply(1:3, function(i) lapply(cvs4cm, function(lst) lst[i]))) names(valslst4cm) <- gsub("^(.*)\\.BMRKR2\\.(.*)$", "\\2.\\1", names(valslst4cm)) valslst3cm <- unlist(cell_values(tbl3c_cm)) expect_identical( valslst3cm, valslst4cm[names(valslst3cm)] ) }) ## https://github.com/insightsengineering/rtables/issues/323 test_that("empty factor levels represented correctly when ref group is set", { df <- data.frame( val = 1:10, grp = factor(rep("a", 10), levels = c("a", "b")) ) tbl <- basic_table() %>% split_cols_by("grp", ref_group = "a") %>% analyze("val") %>% build_table(df) expect_identical(ncol(tbl), 2L) }) test_that("error on empty level of splitting variable", { mydf <- data.frame( x = c("hi", "", "lo"), y = c(5, 10, 20), stringsAsFactors = FALSE ) mydf2 <- mydf mydf2$x <- factor(mydf2$x) lyt1 <- basic_table() %>% split_cols_by("x") %>% analyze("y") expect_error( build_table(lyt1, mydf), "Got empty string level in splitting variable x" ) expect_error( build_table(lyt1, mydf2), "Got empty string level in splitting variable x" ) lyt2 <- basic_table() %>% split_rows_by("x") %>% analyze("y") expect_error( build_table(lyt2, mydf), "Got empty string level in splitting variable x" ) expect_error( build_table(lyt2, mydf2), "Got empty string level in splitting variable x" ) }) test_that("error when afun gives differing numbers of rows is informative", { afunconst <- function() { nr <- 1 function(x, ...) { nr <<- nr + 1 in_rows(.list = as.list(seq_len(nr)), .names = paste(seq_len(nr))) } } my_broken_afun <- afunconst() lyt <- basic_table() %>% split_cols_by("ARM") %>% analyze("AGE", my_broken_afun) expect_error(build_table(lyt, DM), "Number of rows generated by analysis function do not match across all columns.") }) test_that("warning when same name siblings", { lyt <- basic_table() %>% analyze("AGE", mean) %>% analyze("AGE", mean, var_labels = "AGE2") expect_warning( tbl <- build_table(lyt, DM), "Non-unique sibling analysis table names" ) expect_identical( row_paths(tbl)[[3]][2], "AGE2" ) }) test_that("error when inset < 0 or non-number", { expect_error( basic_table(inset = -1), "invalid table_inset value" ) expect_error( expect_warning(basic_table(inset = "haha")), "invalid table_inset value" ) }) test_that("error when ref_group value not a level of var when using split_cols_by", { lyt <- basic_table() %>% split_cols_by("ARM", ref_group = "test_level") expect_error( tbl <- build_table(lyt, DM), 'Reference group "test_level" was not present in the levels of ARM in the data.' ) }) test_that("counts_wpcts works as expected", { rows_res <- counts_wpcts(DM$SEX, 400) rows_exp <- in_rows( .list = list( F = rcell(c(187, 187 / 400), format = "xx (xx.x%)"), M = rcell(c(169, 169 / 400), format = "xx (xx.x%)"), U = rcell(c(0, 0), format = "xx (xx.x%)"), UNDIFFERENTIATED = rcell(c(0, 0), format = "xx (xx.x%)") ) ) expect_identical(rows_res, rows_exp) }) test_that("counts_wpcts returns error correctly", { expect_error( counts_wpcts(DM$AGE, 400), "using the 'counts_wpcts' analysis function requires factor data to guarantee equal numbers" ) }) test_that("qtable works", { nice_comp_table <- function(t1, t2) { expect_identical(row_paths(t1), row_paths(t2)) expect_identical(col_paths(t1), col_paths(t2)) expect_equal(cell_values(t1), cell_values(t2)) expect_identical(top_left(t1), top_left(t2)) } summary_list <- function(x, ...) as.list(summary(x)) summary_list2 <- function(x, ...) in_rows(.list = summary_list(x, ...), .formats = "xx.xx") t0 <- qtable(ex_adsl) count <- function(df, ...) rcell(NROW(df), label = "count") count_use_nms <- function(df, .spl_context, ...) { nm <- tail(.spl_context$value, 1) rcell(NROW(df), label = nm) } t0b <- basic_table(show_colcounts = TRUE) %>% analyze(names(ex_adsl)[1], count) %>% build_table(ex_adsl) nice_comp_table(t0, t0b) t1 <- qtable(ex_adsl, row_vars = "ARM") t1b <- basic_table(show_colcounts = TRUE) %>% split_rows_by("ARM", child_labels = "hidden") %>% analyze(names(ex_adsl)[1], count_use_nms) %>% append_topleft("count") %>% build_table(ex_adsl) nice_comp_table(t1, t1b) t2 <- qtable(ex_adsl, col_vars = "ARM") t2b <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM", child_labels = "hidden") %>% analyze(names(ex_adsl)[1], count) %>% build_table(ex_adsl) nice_comp_table(t2, t2b) t3 <- qtable(ex_adsl, row_vars = "SEX", col_vars = "ARM") t3b <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM", child_labels = "hidden") %>% split_rows_by("SEX", child_labels = "hidden", split_fun = drop_split_levels) %>% analyze(names(ex_adsl)[1], count_use_nms) %>% append_topleft("count") %>% build_table(ex_adsl) nice_comp_table(t3, t3b) t4 <- qtable(ex_adsl, row_vars = c("COUNTRY", "SEX"), col_vars = c("ARM", "STRATA1")) t4b <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM", child_labels = "hidden") %>% split_cols_by("STRATA1") %>% split_rows_by("COUNTRY", split_fun = drop_split_levels) %>% split_rows_by("SEX", split_fun = drop_split_levels, child_labels = "hidden") %>% analyze(names(ex_adsl)[1], count_use_nms) %>% append_topleft("count") %>% build_table(ex_adsl) nice_comp_table(t4, t4b) t5 <- qtable(ex_adsl, row_vars = c("COUNTRY", "SEX"), col_vars = c("ARM", "STRATA1"), avar = "AGE", afun = mean ) mean_use_nm <- function(x, .spl_context, ...) { rcell(mean(x, ...), format = "xx.xx", label = tail(.spl_context$value, 1)) } t5b <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM", split_fun = drop_split_levels, child_labels = "hidden") %>% split_cols_by("STRATA1", split_fun = drop_split_levels) %>% split_rows_by("COUNTRY", split_fun = drop_split_levels) %>% split_rows_by("SEX", child_labels = "hidden", split_fun = drop_split_levels) %>% analyze("AGE", mean_use_nm) %>% append_topleft("AGE - mean") %>% build_table(ex_adsl) nice_comp_table(t5, t5b) t6 <- qtable(ex_adsl, row_vars = "SEX", col_vars = "ARM", avar = "AGE", afun = summary_list) t6b <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM", split_fun = drop_split_levels, child_labels = "hidden") %>% split_rows_by("SEX", split_fun = drop_split_levels) %>% analyze("AGE", summary_list2) %>% append_topleft("AGE - summary_list") %>% build_table(ex_adsl) nice_comp_table(t6, t6b) t7 <- suppressWarnings(qtable(ex_adsl, row_vars = "SEX", col_vars = "ARM", avar = "AGE", afun = range )) range_use_nms <- function(x, .spl_context, ...) { rcell(suppressWarnings(range(x)), label = tail(.spl_context$value, 1), format = "xx.x / xx.x") } t7b <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM", split_fun = drop_split_levels, child_labels = "hidden") %>% split_rows_by("SEX", child_labels = "hidden", split_fun = drop_split_levels) %>% analyze("AGE", range_use_nms) %>% append_topleft("AGE - range") %>% build_table(ex_adsl) nice_comp_table(t7, t7b) t8 <- qtable(ex_adsl, row_vars = c("COUNTRY", "SEX"), col_vars = c("ARM"), avar = "AGE", afun = mean, summarize_groups = TRUE ) t9 <- qtable(ex_adsl, row_vars = c("COUNTRY", "SEX"), col_vars = c("ARM"), avar = "AGE", afun = summary_list, summarize_groups = TRUE ) t9b <- basic_table(show_colcounts = TRUE) %>% split_cols_by("ARM", split_fun = drop_split_levels, child_labels = "hidden") %>% split_rows_by("COUNTRY", split_fun = drop_split_levels) %>% summarize_row_groups() %>% split_rows_by("SEX", split_fun = drop_split_levels) %>% summarize_row_groups() %>% analyze("AGE", summary_list2) %>% append_topleft("AGE - summary_list") %>% build_table(ex_adsl) nice_comp_table(t9, t9b) ## regressions tests for https://github.com/insightsengineering/rtables/issues/698 fivenum3 <- function(x) { as.list(fivenum(x)) } t10 <- qtable(ex_adsl, col_vars = "ARM", avar = "AGE", afun = fivenum3, row_labels = letters[1:5]) expect_equal(top_left(t10), "AGE - fivenum3") mpf10 <- matrix_form(t10) expect_equal( mf_strings(mpf10)[3:7, 1], letters[1:5] ) t11 <- qtable( ex_adsl, row_vars = "STRATA2", col_vars = "ARM", avar = "AGE", afun = fivenum3, row_labels = letters[1:5] ) expect_equal(top_left(t11), "AGE - fivenum3") mpf11 <- matrix_form(t11) expect_equal( mf_strings(mpf11)[4:8, 1], letters[1:5] ) t12 <- qtable(ex_adsl, row_vars = "STRATA2", col_vars = "ARM", avar = "AGE", afun = mean, row_labels = "mylabel") ## compactness expect_equal(top_left(t12), "mylabel") mpf12 <- matrix_form(t12) expect_equal(mf_strings(mpf12)[3:4, 1], levels(ex_adsl$STRATA2)) t13 <- qtable(ex_adsl, col_vars = "ARM", avar = "AGE", afun = mean, row_labels = "mylabel") expect_identical(top_left(t13), character()) mpf13 <- matrix_form(t13) expect_equal(mf_strings(mpf13)[3, 1], "mylabel") expect_error( qtable(ex_adsl, row_vars = "STRATA2", col_vars = "ARM", avar = "AGE", afun = mean, row_labels = c("ABC", "EFG", "HIJ") ), "does not agree with number of rows" ) expect_error( qtable(ex_adsl, col_vars = "ARM", avar = "AGE", afun = fivenum3, row_labels = "ABC" ), "does not agree with number of rows" ) }) ## https://github.com/insightsengineering/rtables/issues/671 test_that("problematic labels are caught and give informative error message", { lyt <- basic_table() %>% split_rows_by("Species") %>% analyze("Sepal.Length", afun = make_afun(simple_analysis, .labels = list(Mean = "this is {test}"))) expect_error(build_table(lyt, iris), "Labels cannot contain [{] or [}] due to") }) ## No superfluous warning test_that("No superfluous warning when ref group is set with custom split fun", { reorder_facets <- function(splret, spl, fulldf, ...) { # browser() if you enter here the order of splret seems already correct ord <- order(names(splret$values)) make_split_result( splret$values[ord], splret$datasplit[ord], splret$labels[ord] ) } lyt <- basic_table() %>% split_cols_by("Species", ref_group = "virginica", split_fun = make_split_fun(post = list(reorder_facets))) %>% analyze("Sepal.Length") expect_silent(build_table(lyt, iris)) })