context("soft_svd/soft_impute") k = 10 seq_k = seq_len(k) m = movielens100k[1:100, 1:200] svd_ground_true = svd(m) svd_soft_svd = soft_svd(m, rank = k, n_iter = 100, convergence_tol = 1e-6) test_that("test matrix restore with soft-svd", { m_restored_svd = svd_ground_true$u[, seq_k] %*% diag(x = svd_ground_true$d[seq_k]) %*% t(svd_ground_true$v[, seq_k]) m_restored_soft_svd = svd_soft_svd$u %*% diag(x = svd_soft_svd$d) %*% t(svd_soft_svd$v) expect_equivalent(m_restored_svd, m_restored_soft_svd, tolerance = 1e-1) }) test_that("test soft-impute", { res_soft_impute = soft_impute(movielens100k, rank = k, n_iter = 100, convergence_tol = 1e-3) # basic dimesnions check expect_equal(length(res_soft_impute$d), k) expect_equal(ncol(res_soft_impute$v), k) expect_equal(ncol(res_soft_impute$u), k) expect_equal(nrow(res_soft_impute$u), nrow(movielens100k)) expect_equal(nrow(res_soft_impute$v), ncol(movielens100k)) # check vectors are orthogonal expect_equal(sum((crossprod(res_soft_impute$v) - diag(k))**2), 0, tolerance = 1e-6) expect_equal(sum((crossprod(res_soft_impute$u) - diag(k))**2), 0, tolerance = 1e-6) })