test_that("NLP with non-fully-factorial design", { data("nlp", package = "rsimsum") nlp.subset <- nlp %>% dplyr::filter(!(ss == 100 & esigma == 2)) # s.nlp <- rsimsum::simsum( data = nlp, estvarname = "b", true = 0, se = "se", methodvar = "model", by = c("baseline", "ss", "esigma") ) td.nlp <- tidy(summary(s.nlp)) # s.nlp.subset <- rsimsum::simsum( data = nlp.subset, estvarname = "b", true = 0, se = "se", methodvar = "model", by = c("baseline", "ss", "esigma") ) td.nlp.subset <- tidy(summary(s.nlp.subset)) # expect_true(object = (nrow(td.nlp) > nrow(td.nlp.subset))) # expect_s3_class(object = autoplot(s.nlp, type = "nlp"), class = c("gg", "ggplot")) expect_s3_class(object = autoplot(s.nlp.subset, type = "nlp"), class = c("gg", "ggplot")) })