R Under development (unstable) (2024-08-17 r87027 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ## VT::15.09.2013 - this will render the output independent
> ##  from the version of the package
> suppressPackageStartupMessages(library(rrcov))
> library(MASS)
> 
> ## VT::14.01.2020
> ##  On some platforms minor differences are shown - use
>         ## IGNORE_RDIFF_BEGIN
>         ## IGNORE_RDIFF_END
> 
> dodata <- function(method) {
+ 
+     options(digits = 5)
+     set.seed(101) # <<-- sub-sampling algorithm now based on R's RNG and seed
+ 
+     tmp <- sys.call()
+     cat("\nCall: ", deparse(substitute(tmp)),"\n")
+     cat("===================================================\n")
+ 
+     cat("\nData: ", "hemophilia\n")
+     data(hemophilia)
+     show(rlda <- Linda(as.factor(gr)~., data=hemophilia, method=method))
+     show(predict(rlda))
+ 
+     cat("\nData: ", "anorexia\n")
+     data(anorexia)
+     show(rlda <- Linda(Treat~., data=anorexia, method=method))
+     show(predict(rlda))
+ 
+     cat("\nData: ", "Pima\n")
+     data(Pima.tr)
+     show(rlda <- Linda(type~., data=Pima.tr, method=method))
+     show(predict(rlda))
+ 
+     cat("\nData: ", "Forest soils\n")
+     data(soil)
+     soil1983 <- soil[soil$D == 0, -2]       # only 1983, remove column D (always 0)
+ 
+     ## This will not work within the function, of course
+     ##  - comment it out
+     ## IGNORE_RDIFF_BEGIN
+     rlda <- Linda(F~., data=soil1983, method=method)
+     ##  show(rlda)
+     ## IGNORE_RDIFF_END
+     show(predict(rlda))
+ 
+     cat("\nData: ", "Raven and Miller diabetes data\n")
+     data(diabetes)
+     show(rlda <- Linda(group~insulin+glucose+sspg, data=diabetes, method=method))
+     show(predict(rlda))
+ 
+     cat("\nData: ", "iris\n")
+     data(iris)
+     if(method != "mcdA")
+     {
+         show(rlda <- Linda(Species~., data=iris, method=method, l1med=TRUE))
+         show(predict(rlda))
+     }
+ 
+     cat("\nData: ", "crabs\n")
+     data(crabs)
+     show(rlda <- Linda(sp~., data=crabs, method=method))
+     show(predict(rlda))
+ 
+     cat("\nData: ", "fish\n")
+     data(fish)
+     fish <- fish[-14,]      # remove observation #14 containing missing value
+ 
+     # The height and width are calculated as percentages
+     #   of the third length variable
+     fish[,5] <- fish[,5]*fish[,4]/100
+     fish[,6] <- fish[,6]*fish[,4]/100
+ 
+     ## There is one class with only 6 observations (p=6). Normally
+     ##  Linda will fail, therefore use l1med=TRUE.
+     ##  This works only for methods mcdB and mcdC
+ 
+     table(fish$Species)
+     if(method != "mcdA")
+     {
+         ## IGNORE_RDIFF_BEGIN
+         rlda <- Linda(Species~., data=fish, method=method, l1med=TRUE)
+         ## show(rlda)
+         ## IGNORE_RDIFF_END
+         show(predict(rlda))
+     }
+ 
+     cat("\nData: ", "pottery\n")
+     data(pottery)
+     show(rlda <- Linda(origin~., data=pottery, method=method))
+     show(predict(rlda))
+ 
+     cat("\nData: ", "olitos\n")
+     data(olitos)
+     if(method != "mcdA")
+     {
+         ## IGNORE_RDIFF_BEGIN
+         rlda <- Linda(grp~., data=olitos, method=method, l1med=TRUE)
+         ## show(rlda)
+         ## IGNORE_RDIFF_END
+         show(predict(rlda))
+     }
+ 
+     cat("===================================================\n")
+ }
> 
> 
> ## -- now do it:
> dodata(method="mcdA")

Call:  dodata(method = "mcdA") 
===================================================

Data:  hemophilia
Call:
Linda(as.factor(gr) ~ ., data = hemophilia, method = method)

Prior Probabilities of Groups:
carrier  normal 
    0.6     0.4 

Group means:
        AHFactivity AHFantigen
carrier    -0.30795 -0.0059911
normal     -0.12920 -0.0603000

Within-groups Covariance Matrix:
            AHFactivity AHFantigen
AHFactivity    0.018036   0.011853
AHFantigen     0.011853   0.019185

Linear Coeficients:
        AHFactivity AHFantigen
carrier    -28.4029    17.2368
normal      -8.5834     2.1602

Constants:
carrier  normal 
-4.8325 -1.4056 
                          
Apparent error rate 0.1333

Classification table 
         Predicted
Actual    carrier normal
  carrier      39      6
  normal        4     26

Confusion matrix 
         Predicted
Actual    carrier normal
  carrier   0.867  0.133
  normal    0.133  0.867

Data:  anorexia
Call:
Linda(Treat ~ ., data = anorexia, method = method)

Prior Probabilities of Groups:
    CBT    Cont      FT 
0.40278 0.36111 0.23611 

Group means:
      Prewt Postwt
CBT  82.633 82.950
Cont 81.558 81.108
FT   84.331 94.762

Within-groups Covariance Matrix:
         Prewt  Postwt
Prewt  26.9291  3.3862
Postwt  3.3862 18.2368

Linear Coeficients:
      Prewt Postwt
CBT  2.5563 4.0738
Cont 2.5284 3.9780
FT   2.5374 4.7250

Constants:
    CBT    Cont      FT 
-275.49 -265.45 -332.31 
                          
Apparent error rate 0.3889

Classification table 
      Predicted
Actual CBT Cont FT
  CBT   16    5  8
  Cont  11   15  0
  FT     0    4 13

Confusion matrix 
      Predicted
Actual   CBT  Cont    FT
  CBT  0.552 0.172 0.276
  Cont 0.423 0.577 0.000
  FT   0.000 0.235 0.765

Data:  Pima
Call:
Linda(type ~ ., data = Pima.tr, method = method)

Prior Probabilities of Groups:
  No  Yes 
0.66 0.34 

Group means:
     npreg    glu     bp  skin    bmi     ped    age
No  1.8602 107.69 67.344 25.29 30.642 0.40777 24.667
Yes 5.3167 145.85 74.283 31.80 34.095 0.49533 37.883

Within-groups Covariance Matrix:
         npreg       glu         bp      skin      bmi       ped       age
npreg  8.51105  -5.61029   4.756672   1.52732  0.82066 -0.010070 12.382693
glu   -5.61029 656.11894  49.855724  16.67486 23.07833 -0.352475 17.724967
bp     4.75667  49.85572 119.426757  29.64563 12.90698 -0.049538 21.287178
skin   1.52732  16.67486  29.645632 113.19900 44.15972 -0.157594  6.741105
bmi    0.82066  23.07833  12.906985  44.15972 35.54164  0.038640  1.481520
ped   -0.01007  -0.35247  -0.049538  -0.15759  0.03864  0.062664 -0.069636
age   12.38269  17.72497  21.287178   6.74110  1.48152 -0.069636 64.887154

Linear Coeficients:
       npreg      glu      bp     skin    bmi    ped     age
No  -0.45855 0.092789 0.45848 -0.30675 1.0075 6.2670 0.30749
Yes -0.22400 0.150013 0.44787 -0.26148 1.0015 8.2935 0.45187

Constants:
     No     Yes 
-37.050 -51.586 
                        
Apparent error rate 0.22

Classification table 
      Predicted
Actual  No Yes
   No  107  25
   Yes  19  49

Confusion matrix 
      Predicted
Actual    No   Yes
   No  0.811 0.189
   Yes 0.279 0.721

Data:  Forest soils
                          
Apparent error rate 0.3103

Classification table 
      Predicted
Actual  1  2  3
     1  7  2  2
     2  3 13  7
     3  1  3 20

Confusion matrix 
      Predicted
Actual     1     2     3
     1 0.636 0.182 0.182
     2 0.130 0.565 0.304
     3 0.042 0.125 0.833

Data:  Raven and Miller diabetes data
Call:
Linda(group ~ insulin + glucose + sspg, data = diabetes, method = method)

Prior Probabilities of Groups:
  normal chemical    overt 
 0.52414  0.24828  0.22759 

Group means:
         insulin glucose    sspg
normal   163.939   345.8  99.076
chemical 299.448   476.9 223.621
overt     95.958  1026.4 343.000

Within-groups Covariance Matrix:
        insulin glucose   sspg
insulin  7582.0 -1263.1 1095.8
glucose -1263.1 18952.4 4919.3
sspg     1095.8  4919.3 3351.2

Linear Coeficients:
          insulin  glucose      sspg
normal   0.027694 0.023859 -0.014514
chemical 0.040288 0.022532  0.020479
overt    0.017144 0.048768  0.025158

Constants:
  normal chemical    overt 
 -6.3223 -15.0879 -31.6445 
                          
Apparent error rate 0.1862

Classification table 
          Predicted
Actual     normal chemical overt
  normal       69        7     0
  chemical     13       23     0
  overt         2        5    26

Confusion matrix 
          Predicted
Actual     normal chemical overt
  normal    0.908    0.092 0.000
  chemical  0.361    0.639 0.000
  overt     0.061    0.152 0.788

Data:  iris

Data:  crabs
Call:
Linda(sp ~ ., data = crabs, method = method)

Prior Probabilities of Groups:
  B   O 
0.5 0.5 

Group means:
     sexM  index     FL     RW     CL     CW     BD
B 0.34722 27.333 14.211 12.253 30.397 35.117 12.765
O 0.56627 25.554 17.131 13.405 34.247 38.155 15.525

Within-groups Covariance Matrix:
          sexM     index       FL       RW       CL       CW       BD
sexM   0.26391   0.76754  0.18606 -0.33763  0.65944  0.59857  0.28932
index  0.76754 191.38080 38.42685 26.32923 82.43953 91.89091 38.13688
FL     0.18606  38.42685  8.50147  5.68789 18.13749 20.30739  8.30920
RW    -0.33763  26.32923  5.68789  4.95782 11.90225 13.61117  5.45814
CL     0.65944  82.43953 18.13749 11.90225 39.60115 44.10886 18.09504
CW     0.59857  91.89091 20.30739 13.61117 44.10886 49.42616 20.17554
BD     0.28932  38.13688  8.30920  5.45814 18.09504 20.17554  8.39525

Linear Coeficients:
    sexM   index     FL     RW     CL       CW       BD
B 29.104 -2.4938 10.809 15.613 0.8320  -4.2978 -0.46788
O 42.470 -3.9361 26.427 22.857 2.8582 -17.1526 12.31048

Constants:
       B        O 
 -78.317 -159.259 
                     
Apparent error rate 0

Classification table 
      Predicted
Actual   B   O
     B 100   0
     O   0 100

Confusion matrix 
      Predicted
Actual B O
     B 1 0
     O 0 1

Data:  fish

Data:  pottery
Call:
Linda(origin ~ ., data = pottery, method = method)

Prior Probabilities of Groups:
   Attic Eritrean 
 0.48148  0.51852 

Group means:
            SI    AL   FE   MG   CA    TI
Attic    55.36 13.73 9.82 5.45 6.03 0.863
Eritrean 52.52 16.23 9.13 3.09 6.26 0.814

Within-groups Covariance Matrix:
           SI       AL        FE        MG        CA         TI
SI 13.5941404 2.986675 -0.651132  0.173577 -0.350984 -0.0051996
AL  2.9866747 1.622412  0.485167  0.712400  0.077443  0.0133306
FE -0.6511317 0.485167  1.065427 -0.403601 -1.936552  0.0576472
MG  0.1735766 0.712400 -0.403601  2.814948  3.262786 -0.0427129
CA -0.3509837 0.077443 -1.936552  3.262786  7.720320 -0.1454065
TI -0.0051996 0.013331  0.057647 -0.042713 -0.145406  0.0044093

Linear Coeficients:
             SI      AL     FE       MG     CA       TI
Attic    63.235 -196.99 312.92  7.28960 57.082 -1272.23
Eritrean 41.554 -123.49 201.47 -0.95431 43.616  -597.91

Constants:
   Attic Eritrean 
-1578.14  -901.13 
                          
Apparent error rate 0.1111

Classification table 
          Predicted
Actual     Attic Eritrean
  Attic       12        1
  Eritrean     2       12

Confusion matrix 
          Predicted
Actual     Attic Eritrean
  Attic    0.923    0.077
  Eritrean 0.143    0.857

Data:  olitos
===================================================
> dodata(method="mcdB")

Call:  dodata(method = "mcdB") 
===================================================

Data:  hemophilia
Call:
Linda(as.factor(gr) ~ ., data = hemophilia, method = method)

Prior Probabilities of Groups:
carrier  normal 
    0.6     0.4 

Group means:
        AHFactivity AHFantigen
carrier    -0.31456  -0.014775
normal     -0.13582  -0.069084

Within-groups Covariance Matrix:
            AHFactivity AHFantigen
AHFactivity   0.0125319  0.0086509
AHFantigen    0.0086509  0.0182424

Linear Coeficients:
        AHFactivity AHFantigen
carrier     -36.486    16.4923
normal      -12.226     2.0107

Constants:
carrier  normal 
-6.1276 -1.6771 
                        
Apparent error rate 0.16

Classification table 
         Predicted
Actual    carrier normal
  carrier      38      7
  normal        5     25

Confusion matrix 
         Predicted
Actual    carrier normal
  carrier   0.844  0.156
  normal    0.167  0.833

Data:  anorexia
Call:
Linda(Treat ~ ., data = anorexia, method = method)

Prior Probabilities of Groups:
    CBT    Cont      FT 
0.40278 0.36111 0.23611 

Group means:
      Prewt Postwt
CBT  83.254 82.381
Cont 82.178 80.539
FT   84.951 94.193

Within-groups Covariance Matrix:
         Prewt  Postwt
Prewt  19.1751  8.8546
Postwt  8.8546 25.2326

Linear Coeficients:
      Prewt Postwt
CBT  3.3822 2.0780
Cont 3.3555 2.0144
FT   3.2299 2.5996

Constants:
    CBT    Cont      FT 
-227.29 -220.01 -261.06 
                          
Apparent error rate 0.4444

Classification table 
      Predicted
Actual CBT Cont FT
  CBT   16    5  8
  Cont  12   11  3
  FT     0    4 13

Confusion matrix 
      Predicted
Actual   CBT  Cont    FT
  CBT  0.552 0.172 0.276
  Cont 0.462 0.423 0.115
  FT   0.000 0.235 0.765

Data:  Pima
Call:
Linda(type ~ ., data = Pima.tr, method = method)

Prior Probabilities of Groups:
  No  Yes 
0.66 0.34 

Group means:
     npreg    glu     bp   skin    bmi     ped    age
No  2.0767 109.45 67.790 26.158 30.930 0.41455 24.695
Yes 5.5938 145.40 74.748 33.754 34.501 0.49898 37.821

Within-groups Covariance Matrix:
          npreg       glu        bp     skin      bmi       ped       age
npreg  6.601330   9.54054   7.33480   3.5803  1.66539 -0.019992 10.661763
glu    9.540535 573.03642  60.57124  28.3698 30.28444 -0.436611 28.318034
bp     7.334803  60.57124 112.03792  27.7566 13.54085 -0.040510 24.692240
skin   3.580339  28.36976  27.75661 112.0036 47.22411  0.100399 13.408195
bmi    1.665393  30.28444  13.54085  47.2241 38.37753  0.175891  6.640765
ped   -0.019992  -0.43661  -0.04051   0.1004  0.17589  0.062551 -0.070673
age   10.661763  28.31803  24.69224  13.4082  6.64077 -0.070673 40.492363

Linear Coeficients:
      npreg     glu      bp     skin     bmi    ped     age
No  -1.3073 0.10851 0.48404 -0.30638 0.86002 5.9796 0.55388
Yes -1.3136 0.16260 0.44480 -0.25518 0.79826 8.1199 0.86269

Constants:
     No     Yes 
-38.774 -53.654 
                        
Apparent error rate 0.25

Classification table 
      Predicted
Actual  No Yes
   No  104  28
   Yes  22  46

Confusion matrix 
      Predicted
Actual    No   Yes
   No  0.788 0.212
   Yes 0.324 0.676

Data:  Forest soils
                          
Apparent error rate 0.3448

Classification table 
      Predicted
Actual  1  2  3
     1  4  3  4
     2  2 14  7
     3  2  2 20

Confusion matrix 
      Predicted
Actual     1     2     3
     1 0.364 0.273 0.364
     2 0.087 0.609 0.304
     3 0.083 0.083 0.833

Data:  Raven and Miller diabetes data
Call:
Linda(group ~ insulin + glucose + sspg, data = diabetes, method = method)

Prior Probabilities of Groups:
  normal chemical    overt 
 0.52414  0.24828  0.22759 

Group means:
         insulin glucose    sspg
normal   152.405  346.55  99.387
chemical 288.244  478.80 226.226
overt     84.754 1028.28 345.605

Within-groups Covariance Matrix:
        insulin glucose    sspg
insulin 5061.46  289.69 2071.71
glucose  289.69 1983.07  385.31
sspg    2071.71  385.31 3000.17

Linear Coeficients:
           insulin glucose       sspg
normal    0.021952 0.17236 -0.0041671
chemical  0.034852 0.23217  0.0215200
overt    -0.045700 0.50940  0.0813292

Constants:
  normal chemical    overt 
 -31.976  -64.433 -275.502 
                          
Apparent error rate 0.0966

Classification table 
          Predicted
Actual     normal chemical overt
  normal       73        3     0
  chemical      4       32     0
  overt         0        7    26

Confusion matrix 
          Predicted
Actual     normal chemical overt
  normal    0.961    0.039 0.000
  chemical  0.111    0.889 0.000
  overt     0.000    0.212 0.788

Data:  iris
Call:
Linda(Species ~ ., data = iris, method = method, l1med = TRUE)

Prior Probabilities of Groups:
    setosa versicolor  virginica 
   0.33333    0.33333    0.33333 

Group means:
           Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa           4.9834      3.4153       1.4532     0.22474
versicolor       5.8947      2.8149       4.2263     1.35024
virginica        6.5255      3.0017       5.4485     2.06756

Within-groups Covariance Matrix:
             Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length     0.201176    0.084299     0.102984    0.037019
Sepal.Width      0.084299    0.108394     0.050253    0.031757
Petal.Length     0.102984    0.050253     0.120215    0.045016
Petal.Width      0.037019    0.031757     0.045016    0.032825

Linear Coeficients:
           Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa           22.536   27.422168      -3.6855    -40.0445
versicolor       17.559    6.374082      24.1965    -18.0178
virginica        16.488    0.015576      29.9586      3.2926

Constants:
    setosa versicolor  virginica 
   -96.901   -100.790   -139.937 
                          
Apparent error rate 0.0267

Classification table 
            Predicted
Actual       setosa versicolor virginica
  setosa         50          0         0
  versicolor      0         48         2
  virginica       0          2        48

Confusion matrix 
            Predicted
Actual       setosa versicolor virginica
  setosa          1       0.00      0.00
  versicolor      0       0.96      0.04
  virginica       0       0.04      0.96

Data:  crabs
Call:
Linda(sp ~ ., data = crabs, method = method)

Prior Probabilities of Groups:
  B   O 
0.5 0.5 

Group means:
     sexM  index     FL     RW     CL     CW     BD
B 0.41060 25.420 13.947 11.922 29.783 34.404 12.470
O 0.60279 23.202 16.782 13.086 33.401 37.230 15.131

Within-groups Covariance Matrix:
          sexM     index       FL       RW       CL        CW       BD
sexM   0.27470   0.24656  0.12787 -0.34713  0.48937   0.41525  0.20253
index  0.24656 204.06823 42.17347 28.25816 89.28109 100.21077 40.74069
FL     0.12787  42.17347  9.45366  6.24808 19.97936  22.49310  9.03804
RW    -0.34713  28.25816  6.24808  5.12921 13.01576  14.90535  5.89729
CL     0.48937  89.28109 19.97936 13.01576 43.06030  48.30814 19.44568
CW     0.41525 100.21077 22.49310 14.90535 48.30814  54.45265 21.82356
BD     0.20253  40.74069  9.03804  5.89729 19.44568  21.82356  8.89498

Linear Coeficients:
    sexM   index      FL      RW     CL       CW       BD
B 12.295 -2.3199  7.2512  9.4085 2.2846  -2.6196 -0.42557
O 13.138 -3.7530 21.1374 11.5680 5.0125 -13.9120 12.61928

Constants:
       B        O 
 -66.688 -134.375 
                     
Apparent error rate 0

Classification table 
      Predicted
Actual   B   O
     B 100   0
     O   0 100

Confusion matrix 
      Predicted
Actual B O
     B 1 0
     O 0 1

Data:  fish
                          
Apparent error rate 0.0949

Classification table 
      Predicted
Actual  1  2  3  4  5  6  7
     1 34  0  0  0  0  0  0
     2  0  6  0  0  0  0  0
     3  0  0 20  0  0  0  0
     4  0  0  0 11  0  0  0
     5  0  0  0  0 13  0  1
     6  0  0  0  0  0 17  0
     7  0 13  0  0  1  0 42

Confusion matrix 
      Predicted
Actual 1     2 3 4     5 6     7
     1 1 0.000 0 0 0.000 0 0.000
     2 0 1.000 0 0 0.000 0 0.000
     3 0 0.000 1 0 0.000 0 0.000
     4 0 0.000 0 1 0.000 0 0.000
     5 0 0.000 0 0 0.929 0 0.071
     6 0 0.000 0 0 0.000 1 0.000
     7 0 0.232 0 0 0.018 0 0.750

Data:  pottery
Call:
Linda(origin ~ ., data = pottery, method = method)

Prior Probabilities of Groups:
   Attic Eritrean 
 0.48148  0.51852 

Group means:
             SI     AL      FE     MG     CA      TI
Attic    55.362 13.847 10.0065 5.3141 5.5371 0.87124
Eritrean 52.522 16.347  9.3165 2.9541 5.7671 0.82224

Within-groups Covariance Matrix:
          SI        AL        FE        MG        CA         TI
SI  9.708953 2.3634831 -0.112005  0.514666 -0.591122  0.0253885
AL  2.363483 0.8510105  0.044491  0.485132  0.241384  0.0023349
FE -0.112005 0.0444910  0.247768 -0.263894 -0.503218  0.0163218
MG  0.514666 0.4851316 -0.263894  1.608899  1.516228 -0.0292787
CA -0.591122 0.2413842 -0.503218  1.516228  2.455516 -0.0531548
TI  0.025389 0.0023349  0.016322 -0.029279 -0.053155  0.0017412

Linear Coeficients:
              SI      AL     FE      MG     CA      TI
Attic    112.705 -368.69 530.54  7.5837 149.60 -927.45
Eritrean  77.198 -244.65 366.95 -3.7987 116.88 -260.83

Constants:
   Attic Eritrean 
 -3252.6  -1961.9 
                          
Apparent error rate 0.1111

Classification table 
          Predicted
Actual     Attic Eritrean
  Attic       12        1
  Eritrean     2       12

Confusion matrix 
          Predicted
Actual     Attic Eritrean
  Attic    0.923    0.077
  Eritrean 0.143    0.857

Data:  olitos
                        
Apparent error rate 0.15

Classification table 
      Predicted
Actual  1  2  3  4
     1 44  1  4  1
     2  2 23  0  0
     3  6  1 26  1
     4  1  1  0  9

Confusion matrix 
      Predicted
Actual     1     2     3     4
     1 0.880 0.020 0.080 0.020
     2 0.080 0.920 0.000 0.000
     3 0.176 0.029 0.765 0.029
     4 0.091 0.091 0.000 0.818
===================================================
> dodata(method="mcdC")

Call:  dodata(method = "mcdC") 
===================================================

Data:  hemophilia
Call:
Linda(as.factor(gr) ~ ., data = hemophilia, method = method)

Prior Probabilities of Groups:
carrier  normal 
    0.6     0.4 

Group means:
        AHFactivity AHFantigen
carrier    -0.32583  -0.011545
normal     -0.12783  -0.071377

Within-groups Covariance Matrix:
            AHFactivity AHFantigen
AHFactivity   0.0120964  0.0075536
AHFantigen    0.0075536  0.0164883

Linear Coeficients:
        AHFactivity AHFantigen
carrier     -37.117   16.30377
normal      -11.015    0.71742

Constants:
carrier  normal 
-6.4636 -1.5947 
                        
Apparent error rate 0.16

Classification table 
         Predicted
Actual    carrier normal
  carrier      38      7
  normal        5     25

Confusion matrix 
         Predicted
Actual    carrier normal
  carrier   0.844  0.156
  normal    0.167  0.833

Data:  anorexia
Call:
Linda(Treat ~ ., data = anorexia, method = method)

Prior Probabilities of Groups:
    CBT    Cont      FT 
0.40278 0.36111 0.23611 

Group means:
      Prewt Postwt
CBT  82.477 82.073
Cont 82.039 80.835
FT   85.242 94.750

Within-groups Covariance Matrix:
         Prewt  Postwt
Prewt  19.6589  8.3891
Postwt  8.3891 22.8805

Linear Coeficients:
      Prewt Postwt
CBT  3.1590 2.4288
Cont 3.1599 2.3743
FT   3.0454 3.0245

Constants:
    CBT    Cont      FT 
-230.85 -226.60 -274.53 
                          
Apparent error rate 0.4583

Classification table 
      Predicted
Actual CBT Cont FT
  CBT   16    5  8
  Cont  14   10  2
  FT     0    4 13

Confusion matrix 
      Predicted
Actual   CBT  Cont    FT
  CBT  0.552 0.172 0.276
  Cont 0.538 0.385 0.077
  FT   0.000 0.235 0.765

Data:  Pima
Call:
Linda(type ~ ., data = Pima.tr, method = method)

Prior Probabilities of Groups:
  No  Yes 
0.66 0.34 

Group means:
     npreg    glu     bp   skin    bmi     ped    age
No  2.3056 110.63 67.991 26.444 31.010 0.41653 25.806
Yes 5.0444 142.58 74.267 33.067 34.309 0.49422 35.156

Within-groups Covariance Matrix:
          npreg       glu         bp       skin      bmi       ped       age
npreg  6.164422   8.43753   6.879286   3.252980  1.54269 -0.020158  9.543745
glu    8.437528 542.79578  57.156929  26.218837 28.63494 -0.421819 23.809124
bp     6.879286  57.15693 106.687356  26.315526 12.86691 -0.039577 22.992973
skin   3.252980  26.21884  26.315526 106.552759 44.95420  0.094311 12.005740
bmi    1.542689  28.63494  12.866911  44.954202 36.56262  0.167258  6.112925
ped   -0.020158  -0.42182  -0.039577   0.094311  0.16726  0.059609 -0.072712
age    9.543745  23.80912  22.992973  12.005740  6.11292 -0.072712 35.594886

Linear Coeficients:
      npreg     glu      bp     skin     bmi    ped     age
No  -1.4165 0.11776 0.49336 -0.31564 0.88761 6.5013 0.67462
Yes -1.3784 0.17062 0.46662 -0.26771 0.83745 8.5204 0.90557

Constants:
     No     Yes 
-41.716 -55.056 
                         
Apparent error rate 0.235

Classification table 
      Predicted
Actual  No Yes
   No  107  25
   Yes  22  46

Confusion matrix 
      Predicted
Actual    No   Yes
   No  0.811 0.189
   Yes 0.324 0.676

Data:  Forest soils
                          
Apparent error rate 0.3276

Classification table 
      Predicted
Actual  1  2  3
     1  5  2  4
     2  2 13  8
     3  1  2 21

Confusion matrix 
      Predicted
Actual     1     2     3
     1 0.455 0.182 0.364
     2 0.087 0.565 0.348
     3 0.042 0.083 0.875

Data:  Raven and Miller diabetes data
Call:
Linda(group ~ insulin + glucose + sspg, data = diabetes, method = method)

Prior Probabilities of Groups:
  normal chemical    overt 
 0.52414  0.24828  0.22759 

Group means:
         insulin glucose   sspg
normal    167.31  348.69 106.44
chemical  247.18  478.18 213.36
overt     101.83  932.92 322.42

Within-groups Covariance Matrix:
        insulin glucose    sspg
insulin 4070.84  118.89 1701.54
glucose  118.89 2195.95  426.95
sspg    1701.54  426.95 2664.49

Linear Coeficients:
           insulin glucose      sspg
normal    0.041471 0.15888 -0.011992
chemical  0.048103 0.21216  0.015359
overt    -0.013579 0.41323  0.063462

Constants:
  normal chemical    overt 
 -31.177  -59.703 -203.775 
                          
Apparent error rate 0.0828

Classification table 
          Predicted
Actual     normal chemical overt
  normal       72        4     0
  chemical      2       34     0
  overt         0        6    27

Confusion matrix 
          Predicted
Actual     normal chemical overt
  normal    0.947    0.053 0.000
  chemical  0.056    0.944 0.000
  overt     0.000    0.182 0.818

Data:  iris
Call:
Linda(Species ~ ., data = iris, method = method, l1med = TRUE)

Prior Probabilities of Groups:
    setosa versicolor  virginica 
   0.33333    0.33333    0.33333 

Group means:
           Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa           5.0163      3.4510       1.4653      0.2449
versicolor       5.9435      2.7891       4.2543      1.3239
virginica        6.3867      3.0033       5.3767      2.0700

Within-groups Covariance Matrix:
             Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length     0.186186    0.082478     0.094998    0.035445
Sepal.Width      0.082478    0.100137     0.049723    0.030678
Petal.Length     0.094998    0.049723     0.113105    0.043078
Petal.Width      0.035445    0.030678     0.043078    0.030885

Linear Coeficients:
           Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa           23.678     30.2896      -3.1124    -44.9900
versicolor       20.342      4.6372      27.3265    -23.2006
virginica        18.377     -2.0004      31.4235      4.0906

Constants:
    setosa versicolor  virginica 
   -104.96    -110.79    -145.49 
                          
Apparent error rate 0.0333

Classification table 
            Predicted
Actual       setosa versicolor virginica
  setosa         50          0         0
  versicolor      0         48         2
  virginica       0          3        47

Confusion matrix 
            Predicted
Actual       setosa versicolor virginica
  setosa          1       0.00      0.00
  versicolor      0       0.96      0.04
  virginica       0       0.06      0.94

Data:  crabs
Call:
Linda(sp ~ ., data = crabs, method = method)

Prior Probabilities of Groups:
  B   O 
0.5 0.5 

Group means:
     sexM  index     FL     RW     CL     CW     BD
B 0.50000 23.956 13.790 11.649 29.390 33.934 12.274
O 0.51087 24.478 16.903 13.330 33.707 37.595 15.276

Within-groups Covariance Matrix:
          sexM     index       FL       RW       CL       CW       BD
sexM   0.25272   0.39179  0.14054 -0.30017  0.51191  0.45114  0.21708
index  0.39179 192.47099 39.97343 26.56698 84.63152 94.99987 38.67917
FL     0.14054  39.97343  8.97950  5.91408 18.98672 21.38046  8.60313
RW    -0.30017  26.56698  5.91408  4.81389 12.31798 14.10613  5.58933
CL     0.51191  84.63152 18.98672 12.31798 40.94109 45.94330 18.52367
CW     0.45114  94.99987 21.38046 14.10613 45.94330 51.80106 20.79704
BD     0.21708  38.67917  8.60313  5.58933 18.52367 20.79704  8.49355

Linear Coeficients:
    sexM   index     FL      RW     CL       CW       BD
B 13.993 -2.5515  9.152  9.9187 2.2321  -2.9774 -0.66797
O 14.362 -4.0280 23.369 12.1556 5.3672 -14.9236 12.94057

Constants:
       B        O 
 -72.687 -142.365 
                     
Apparent error rate 0

Classification table 
      Predicted
Actual   B   O
     B 100   0
     O   0 100

Confusion matrix 
      Predicted
Actual B O
     B 1 0
     O 0 1

Data:  fish
                          
Apparent error rate 0.0316

Classification table 
      Predicted
Actual  1  2  3  4  5  6  7
     1 34  0  0  0  0  0  0
     2  0  5  0  0  1  0  0
     3  0  0 20  0  0  0  0
     4  0  0  0 11  0  0  0
     5  0  0  0  0 13  0  1
     6  0  0  0  0  0 17  0
     7  0  0  0  0  3  0 53

Confusion matrix 
      Predicted
Actual 1     2 3 4     5 6     7
     1 1 0.000 0 0 0.000 0 0.000
     2 0 0.833 0 0 0.167 0 0.000
     3 0 0.000 1 0 0.000 0 0.000
     4 0 0.000 0 1 0.000 0 0.000
     5 0 0.000 0 0 0.929 0 0.071
     6 0 0.000 0 0 0.000 1 0.000
     7 0 0.000 0 0 0.054 0 0.946

Data:  pottery
Call:
Linda(origin ~ ., data = pottery, method = method)

Prior Probabilities of Groups:
   Attic Eritrean 
 0.48148  0.51852 

Group means:
             SI     AL      FE     MG     CA      TI
Attic    55.450 13.738 10.0000 5.0750 5.0750 0.87375
Eritrean 52.444 16.444  9.3222 3.1667 6.1778 0.82000

Within-groups Covariance Matrix:
          SI        AL        FE        MG        CA         TI
SI  6.565481 1.6098148 -0.075259  0.369556 -0.359407  0.0169667
AL  1.609815 0.5640648  0.029407  0.302056  0.112426  0.0018583
FE -0.075259 0.0294074  0.167704 -0.180222 -0.343704  0.0110667
MG  0.369556 0.3020556 -0.180222  1.031667  0.915222 -0.0192167
CA -0.359407 0.1124259 -0.343704  0.915222  1.447370 -0.0348167
TI  0.016967 0.0018583  0.011067 -0.019217 -0.034817  0.0011725

Linear Coeficients:
             SI      AL     FE       MG     CA       TI
Attic    190.17 -622.48 922.21   1.5045 293.30 -990.323
Eritrean 135.34 -431.40 666.59 -14.3288 237.68  -44.025

Constants:
   Attic Eritrean 
 -5924.2  -3802.9 
                          
Apparent error rate 0.1111

Classification table 
          Predicted
Actual     Attic Eritrean
  Attic       12        1
  Eritrean     2       12

Confusion matrix 
          Predicted
Actual     Attic Eritrean
  Attic    0.923    0.077
  Eritrean 0.143    0.857

Data:  olitos
                          
Apparent error rate 0.1667

Classification table 
      Predicted
Actual  1  2  3  4
     1 44  1  2  3
     2  2 22  0  1
     3  5  2 25  2
     4  1  1  0  9

Confusion matrix 
      Predicted
Actual     1     2     3     4
     1 0.880 0.020 0.040 0.060
     2 0.080 0.880 0.000 0.040
     3 0.147 0.059 0.735 0.059
     4 0.091 0.091 0.000 0.818
===================================================
> dodata(method="mrcd")

Call:  dodata(method = "mrcd") 
===================================================

Data:  hemophilia
Call:
Linda(as.factor(gr) ~ ., data = hemophilia, method = method)

Prior Probabilities of Groups:
carrier  normal 
    0.6     0.4 

Group means:
        AHFactivity AHFantigen
carrier    -0.34048  -0.055943
normal     -0.13566  -0.081191

Within-groups Covariance Matrix:
            AHFactivity AHFantigen
AHFactivity   0.0133676  0.0088055
AHFantigen    0.0088055  0.0221225

Linear Coeficients:
        AHFactivity AHFantigen
carrier     -32.264   10.31334
normal      -10.478    0.50044

Constants:
carrier  normal 
-5.7149 -1.6067 
                        
Apparent error rate 0.16

Classification table 
         Predicted
Actual    carrier normal
  carrier      38      7
  normal        5     25

Confusion matrix 
         Predicted
Actual    carrier normal
  carrier   0.844  0.156
  normal    0.167  0.833

Data:  anorexia
Call:
Linda(Treat ~ ., data = anorexia, method = method)

Prior Probabilities of Groups:
    CBT    Cont      FT 
0.40278 0.36111 0.23611 

Group means:
      Prewt Postwt
CBT  83.114 84.009
Cont 80.327 80.125
FT   85.161 94.371

Within-groups Covariance Matrix:
        Prewt Postwt
Prewt  22.498 11.860
Postwt 11.860 20.426

Linear Coeficients:
      Prewt Postwt
CBT  2.1994 2.8357
Cont 2.1653 2.6654
FT   1.9451 3.4907

Constants:
    CBT    Cont      FT 
-211.42 -194.77 -248.97 
                          
Apparent error rate 0.3889

Classification table 
      Predicted
Actual CBT Cont FT
  CBT   15    6  8
  Cont   6   16  4
  FT     0    4 13

Confusion matrix 
      Predicted
Actual   CBT  Cont    FT
  CBT  0.517 0.207 0.276
  Cont 0.231 0.615 0.154
  FT   0.000 0.235 0.765

Data:  Pima
Call:
Linda(type ~ ., data = Pima.tr, method = method)

Prior Probabilities of Groups:
  No  Yes 
0.66 0.34 

Group means:
     npreg    glu     bp   skin    bmi     ped    age
No  1.9925 108.32 66.240 24.856 30.310 0.37382 24.747
Yes 5.8855 145.88 75.715 32.541 33.915 0.39281 38.857

Within-groups Covariance Matrix:
         npreg      glu         bp      skin       bmi       ped     age
npreg 4.090330   7.9547   3.818380   3.35899  2.470242  0.032557  9.5929
glu   7.954730 770.4187  76.377665  53.32216 54.100400 -1.139087 28.5677
bp    3.818380  76.3777 108.201622  42.61184 18.574983 -0.089151 20.3558
skin  3.358992  53.3222  42.611844 146.81170 65.210794 -0.277335 15.0162
bmi   2.470242  54.1004  18.574983  65.21079 52.871847  0.062145  9.0741
ped   0.032557  -1.1391  -0.089151  -0.27733  0.062145  0.063490  0.1762
age   9.592948  28.5677  20.355803  15.01616  9.074109  0.176201 53.5163

Linear Coeficients:
       npreg      glu      bp     skin     bmi    ped     age
No  -1.30832 0.065773 0.54772 -0.32738 0.70207 5.2556 0.40900
Yes -0.76566 0.106435 0.55777 -0.28044 0.61709 5.9199 0.54892

Constants:
     No     Yes 
-33.429 -45.434 
                        
Apparent error rate 0.28

Classification table 
      Predicted
Actual  No Yes
   No  105  27
   Yes  29  39

Confusion matrix 
      Predicted
Actual    No   Yes
   No  0.795 0.205
   Yes 0.426 0.574

Data:  Forest soils
                          
Apparent error rate 0.3448

Classification table 
      Predicted
Actual  1  2  3
     1  7  2  2
     2  4 14  5
     3  3  4 17

Confusion matrix 
      Predicted
Actual     1     2     3
     1 0.636 0.182 0.182
     2 0.174 0.609 0.217
     3 0.125 0.167 0.708

Data:  Raven and Miller diabetes data
Call:
Linda(group ~ insulin + glucose + sspg, data = diabetes, method = method)

Prior Probabilities of Groups:
  normal chemical    overt 
 0.52414  0.24828  0.22759 

Group means:
         insulin glucose    sspg
normal   154.014  346.07  91.606
chemical 248.841  451.10 221.936
overt     89.766 1064.16 335.100

Within-groups Covariance Matrix:
        insulin glucose    sspg
insulin  4948.1 1007.61 1471.12
glucose  1007.6 2597.38  358.57
sspg     1471.1  358.57 3180.04

Linear Coeficients:
             insulin glucose     sspg
normal    0.00027839 0.13121 0.013882
chemical  0.00148074 0.16615 0.050371
overt    -0.10102404 0.43466 0.103100

Constants:
  normal chemical    overt 
 -24.008  -44.642 -245.497 
                          
Apparent error rate 0.0966

Classification table 
          Predicted
Actual     normal chemical overt
  normal       71        5     0
  chemical      2       34     0
  overt         0        7    26

Confusion matrix 
          Predicted
Actual     normal chemical overt
  normal    0.934    0.066 0.000
  chemical  0.056    0.944 0.000
  overt     0.000    0.212 0.788

Data:  iris
Call:
Linda(Species ~ ., data = iris, method = method, l1med = TRUE)

Prior Probabilities of Groups:
    setosa versicolor  virginica 
   0.33333    0.33333    0.33333 

Group means:
           Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa           4.9755      3.3826       1.4608     0.22053
versicolor       5.8868      2.7823       4.2339     1.34603
virginica        6.5176      2.9691       5.4560     2.06335

Within-groups Covariance Matrix:
             Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length     0.238417    0.136325     0.086377    0.036955
Sepal.Width      0.136325    0.148452     0.067500    0.034804
Petal.Length     0.086377    0.067500     0.100934    0.035968
Petal.Width      0.036955    0.034804     0.035968    0.023856

Linear Coeficients:
           Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa           17.106      15.693       7.8806     -52.031
versicolor       21.744     -15.813      38.0139     -11.505
virginica        23.032     -26.567      43.6391      23.777

Constants:
    setosa versicolor  virginica 
   -70.214   -115.832   -180.294 
                        
Apparent error rate 0.02

Classification table 
            Predicted
Actual       setosa versicolor virginica
  setosa         50          0         0
  versicolor      0         49         1
  virginica       0          2        48

Confusion matrix 
            Predicted
Actual       setosa versicolor virginica
  setosa          1       0.00      0.00
  versicolor      0       0.98      0.02
  virginica       0       0.04      0.96

Data:  crabs
Call:
Linda(sp ~ ., data = crabs, method = method)

Prior Probabilities of Groups:
  B   O 
0.5 0.5 

Group means:
  sexM index     FL     RW     CL     CW     BD
B    0  25.5 13.270 12.138 28.102 32.624 11.816
O    1  25.5 16.626 12.262 33.688 37.188 15.324

Within-groups Covariance Matrix:
            sexM   index      FL      RW      CL      CW     BD
sexM  1.5255e-07   0.000  0.0000  0.0000   0.000   0.000  0.000
index 0.0000e+00 337.501 62.8107 46.5073 137.713 154.451 63.514
FL    0.0000e+00  62.811 15.3164  9.8612  29.911  33.479 13.805
RW    0.0000e+00  46.507  9.8612  8.6949  21.878  24.604 10.092
CL    0.0000e+00 137.713 29.9112 21.8779  73.888  73.891 30.486
CW    0.0000e+00 154.451 33.4788 24.6038  73.891  92.801 34.122
BD    0.0000e+00  63.514 13.8053 10.0923  30.486  34.122 15.854

Linear Coeficients:
     sexM    index      FL     RW      CL      CW       BD
B       0 -0.64890 0.95529 2.7299 0.20747 0.28549 -0.23815
O 6555120 -0.83294 1.67920 1.8896 0.32330 0.23479  0.51136

Constants:
          B           O 
-2.1491e+01 -3.2776e+06 
                       
Apparent error rate 0.5

Classification table 
      Predicted
Actual  B  O
     B 50 50
     O 50 50

Confusion matrix 
      Predicted
Actual   B   O
     B 0.5 0.5
     O 0.5 0.5

Data:  fish
                          
Apparent error rate 0.2532

Classification table 
      Predicted
Actual  1  2  3  4  5  6  7
     1 33  0  0  1  0  0  0
     2  0  3  0  0  0  0  3
     3  0  2  5  0  0  0 13
     4  0  0  0 11  0  0  0
     5  0  0  0  0 14  0  0
     6  0  0  0  0  0 17  0
     7  0 19  0  0  2  0 35

Confusion matrix 
      Predicted
Actual     1     2    3     4     5 6     7
     1 0.971 0.000 0.00 0.029 0.000 0 0.000
     2 0.000 0.500 0.00 0.000 0.000 0 0.500
     3 0.000 0.100 0.25 0.000 0.000 0 0.650
     4 0.000 0.000 0.00 1.000 0.000 0 0.000
     5 0.000 0.000 0.00 0.000 1.000 0 0.000
     6 0.000 0.000 0.00 0.000 0.000 1 0.000
     7 0.000 0.339 0.00 0.000 0.036 0 0.625

Data:  pottery
Call:
Linda(origin ~ ., data = pottery, method = method)

Prior Probabilities of Groups:
   Attic Eritrean 
 0.48148  0.51852 

Group means:
             SI     AL     FE     MG     CA      TI
Attic    55.872 13.986 10.113 5.0235 4.7316 0.88531
Eritrean 52.487 16.286  9.499 2.4520 5.3745 0.83959

Within-groups Covariance Matrix:
          SI         AL          FE        MG         CA          TI
SI 12.795913  3.2987125 -0.35496855 0.9399999 -0.0143514  0.01132392
AL  3.298713  1.0829436 -0.03394751 0.2838724  0.0501000  0.00117721
FE -0.354969 -0.0339475  0.08078156 0.0341568 -0.0457411  0.00043177
MG  0.940000  0.2838724  0.03415675 0.4350013  0.1417876  0.00396576
CA -0.014351  0.0501000 -0.04574114 0.1417876  0.4196628 -0.00104893
TI  0.011324  0.0011772  0.00043177 0.0039658 -0.0010489  0.00026205

Linear Coeficients:
             SI      AL     FE      MG     CA     TI
Attic    36.451 -63.784 352.90 -124.07 110.08 3826.6
Eritrean 29.763 -41.039 325.12 -128.32 107.36 3938.1

Constants:
   Attic Eritrean 
 -4000.1  -3776.1 
                          
Apparent error rate 0.1111

Classification table 
          Predicted
Actual     Attic Eritrean
  Attic       12        1
  Eritrean     2       12

Confusion matrix 
          Predicted
Actual     Attic Eritrean
  Attic    0.923    0.077
  Eritrean 0.143    0.857

Data:  olitos
                         
Apparent error rate 0.125

Classification table 
      Predicted
Actual  1  2  3  4
     1 44  2  3  1
     2  1 23  1  0
     3  4  1 27  2
     4  0  0  0 11

Confusion matrix 
      Predicted
Actual     1     2     3     4
     1 0.880 0.040 0.060 0.020
     2 0.040 0.920 0.040 0.000
     3 0.118 0.029 0.794 0.059
     4 0.000 0.000 0.000 1.000
===================================================
> dodata(method="ogk")

Call:  dodata(method = "ogk") 
===================================================

Data:  hemophilia
Call:
Linda(as.factor(gr) ~ ., data = hemophilia, method = method)

Prior Probabilities of Groups:
carrier  normal 
    0.6     0.4 

Group means:
        AHFactivity  AHFantigen
carrier    -0.29043 -0.00052902
normal     -0.12463 -0.06715037

Within-groups Covariance Matrix:
            AHFactivity AHFantigen
AHFactivity    0.015688   0.010544
AHFantigen     0.010544   0.016633

Linear Coeficients:
        AHFactivity AHFantigen
carrier    -32.2203    20.3935
normal      -9.1149     1.7409

Constants:
carrier  normal 
-5.1843 -1.4259 
                          
Apparent error rate 0.1467

Classification table 
         Predicted
Actual    carrier normal
  carrier      38      7
  normal        4     26

Confusion matrix 
         Predicted
Actual    carrier normal
  carrier   0.844  0.156
  normal    0.133  0.867

Data:  anorexia
Call:
Linda(Treat ~ ., data = anorexia, method = method)

Prior Probabilities of Groups:
    CBT    Cont      FT 
0.40278 0.36111 0.23611 

Group means:
      Prewt Postwt
CBT  82.634 82.060
Cont 81.605 80.459
FT   85.157 93.822

Within-groups Covariance Matrix:
         Prewt  Postwt
Prewt  15.8294  4.4663
Postwt  4.4663 19.6356

Linear Coeficients:
      Prewt Postwt
CBT  4.3183 3.1970
Cont 4.2734 3.1256
FT   4.3080 3.7983

Constants:
    CBT    Cont      FT 
-310.50 -301.12 -363.05 
                          
Apparent error rate 0.4583

Classification table 
      Predicted
Actual CBT Cont FT
  CBT   15    5  9
  Cont  14   11  1
  FT     0    4 13

Confusion matrix 
      Predicted
Actual   CBT  Cont    FT
  CBT  0.517 0.172 0.310
  Cont 0.538 0.423 0.038
  FT   0.000 0.235 0.765

Data:  Pima
Call:
Linda(type ~ ., data = Pima.tr, method = method)

Prior Probabilities of Groups:
  No  Yes 
0.66 0.34 

Group means:
     npreg    glu     bp   skin    bmi     ped    age
No  2.4175 109.93 67.332 26.324 30.344 0.38740 26.267
Yes 5.1853 142.29 75.194 33.151 34.878 0.47977 37.626

Within-groups Covariance Matrix:
          npreg       glu        bp     skin      bmi       ped      age
npreg  7.218576   7.52457   6.96595  4.86613  0.45567 -0.054245 14.42648
glu    7.524571 517.38370  58.53812 31.57321 22.68396 -0.200222 22.88780
bp     6.965950  58.53812 101.50317 27.86784 10.89215 -0.152784 25.41819
skin   4.866127  31.57321  27.86784 95.16949 37.45066 -0.117375 14.60676
bmi    0.455675  22.68396  10.89215 37.45066 30.89491  0.043400  4.05584
ped   -0.054245  -0.20022  -0.15278 -0.11737  0.04340  0.051268 -0.18131
age   14.426479  22.88780  25.41819 14.60676  4.05584 -0.181311 57.89570

Linear Coeficients:
       npreg     glu      bp     skin    bmi     ped     age
No  -0.99043 0.12339 0.54101 -0.35335 1.0721  8.4945 0.45482
Yes -1.01369 0.17577 0.53898 -0.35554 1.1563 11.0474 0.63966

Constants:
     No     Yes 
-43.449 -60.176 
                        
Apparent error rate 0.23

Classification table 
      Predicted
Actual  No Yes
   No  108  24
   Yes  22  46

Confusion matrix 
      Predicted
Actual    No   Yes
   No  0.818 0.182
   Yes 0.324 0.676

Data:  Forest soils
                          
Apparent error rate 0.3621

Classification table 
      Predicted
Actual  1  2  3
     1  7  3  1
     2  4 13  6
     3  3  4 17

Confusion matrix 
      Predicted
Actual     1     2     3
     1 0.636 0.273 0.091
     2 0.174 0.565 0.261
     3 0.125 0.167 0.708

Data:  Raven and Miller diabetes data
Call:
Linda(group ~ insulin + glucose + sspg, data = diabetes, method = method)

Prior Probabilities of Groups:
  normal chemical    overt 
 0.52414  0.24828  0.22759 

Group means:
         insulin glucose    sspg
normal   159.540  344.06  99.486
chemical 252.992  478.16 219.442
overt     79.635 1094.96 338.517

Within-groups Covariance Matrix:
         insulin  glucose    sspg
insulin 3844.877   67.238 1456.55
glucose   67.238 2228.396  324.21
sspg    1456.548  324.205 2181.73

Linear Coeficients:
           insulin glucose       sspg
normal    0.040407 0.15379 -0.0042303
chemical  0.047858 0.20764  0.0377766
overt    -0.026158 0.47736  0.1016873

Constants:
  normal chemical    overt 
 -30.115  -61.233 -278.996 
                          
Apparent error rate 0.0966

Classification table 
          Predicted
Actual     normal chemical overt
  normal       71        5     0
  chemical      2       34     0
  overt         0        7    26

Confusion matrix 
          Predicted
Actual     normal chemical overt
  normal    0.934    0.066 0.000
  chemical  0.056    0.944 0.000
  overt     0.000    0.212 0.788

Data:  iris
Call:
Linda(Species ~ ., data = iris, method = method, l1med = TRUE)

Prior Probabilities of Groups:
    setosa versicolor  virginica 
   0.33333    0.33333    0.33333 

Group means:
           Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa           4.9654      3.3913       1.4507     0.21639
versicolor       5.8767      2.7909       4.2238     1.34189
virginica        6.5075      2.9777       5.4459     2.05921

Within-groups Covariance Matrix:
             Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length     0.180280    0.068876     0.101512    0.036096
Sepal.Width      0.068876    0.079556     0.047722    0.029409
Petal.Length     0.101512    0.047722     0.111492    0.038658
Petal.Width      0.036096    0.029409     0.038658    0.029965

Linear Coeficients:
           Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa           28.582     46.5236      -13.859    -54.9877
versicolor       19.837     11.9601       20.865    -17.7704
virginica        16.999      1.9046       29.808      7.9189

Constants:
    setosa versicolor  virginica 
   -134.94    -108.22    -148.56 
                          
Apparent error rate 0.0133

Classification table 
            Predicted
Actual       setosa versicolor virginica
  setosa         50          0         0
  versicolor      0         49         1
  virginica       0          1        49

Confusion matrix 
            Predicted
Actual       setosa versicolor virginica
  setosa          1       0.00      0.00
  versicolor      0       0.98      0.02
  virginica       0       0.02      0.98

Data:  crabs
Call:
Linda(sp ~ ., data = crabs, method = method)

Prior Probabilities of Groups:
  B   O 
0.5 0.5 

Group means:
     sexM  index     FL     RW     CL     CW     BD
B 0.48948 24.060 13.801 11.738 29.491 34.062 12.329
O 0.56236 24.043 16.825 13.158 33.574 37.418 15.223

Within-groups Covariance Matrix:
          sexM     index       FL       RW       CL       CW       BD
sexM   0.24961   0.50421  0.16645 -0.28574  0.54159  0.48449  0.22563
index  0.50421 186.86616 38.46284 25.26749 82.29121 92.11253 37.67723
FL     0.16645  38.46284  8.58830  5.56769 18.33015 20.58235  8.32030
RW    -0.28574  25.26749  5.56769  4.52038 11.70881 13.37643  5.32779
CL     0.54159  82.29121 18.33015 11.70881 39.78186 44.52112 18.01179
CW     0.48449  92.11253 20.58235 13.37643 44.52112 50.06150 20.16852
BD     0.22563  37.67723  8.32030  5.32779 18.01179 20.16852  8.25884

Linear Coeficients:
    sexM   index      FL     RW     CL       CW       BD
B 16.497 -2.5896  8.3966 11.518 1.7536  -2.5325 -0.67361
O 17.010 -4.0452 23.5400 13.702 4.7871 -14.8264 13.04556

Constants:
       B        O 
 -77.695 -147.287 
                     
Apparent error rate 0

Classification table 
      Predicted
Actual   B   O
     B 100   0
     O   0 100

Confusion matrix 
      Predicted
Actual B O
     B 1 0
     O 0 1

Data:  fish
                          
Apparent error rate 0.0063

Classification table 
      Predicted
Actual  1  2  3  4  5  6  7
     1 34  0  0  0  0  0  0
     2  0  6  0  0  0  0  0
     3  0  0 20  0  0  0  0
     4  0  0  0 11  0  0  0
     5  0  0  0  0 14  0  0
     6  0  0  0  0  0 17  0
     7  0  0  0  0  1  0 55

Confusion matrix 
      Predicted
Actual 1 2 3 4     5 6     7
     1 1 0 0 0 0.000 0 0.000
     2 0 1 0 0 0.000 0 0.000
     3 0 0 1 0 0.000 0 0.000
     4 0 0 0 1 0.000 0 0.000
     5 0 0 0 0 1.000 0 0.000
     6 0 0 0 0 0.000 1 0.000
     7 0 0 0 0 0.018 0 0.982

Data:  pottery
Call:
Linda(origin ~ ., data = pottery, method = method)

Prior Probabilities of Groups:
   Attic Eritrean 
 0.48148  0.51852 

Group means:
             SI     AL      FE     MG     CA      TI
Attic    55.381 14.088 10.1316 4.9588 4.7684 0.88444
Eritrean 53.559 16.251  9.1145 2.6213 5.8980 0.82501

Within-groups Covariance Matrix:
          SI         AL        FE         MG       CA          TI
SI  7.878378  1.9064112 -0.545403  0.4167407 -0.11589  0.01850748
AL  1.906411  0.6678763 -0.037744  0.1120891 -0.10733  0.00805556
FE -0.545403 -0.0377438  0.213914 -0.0192356 -0.23121  0.00582800
MG  0.416741  0.1120891 -0.019236  0.2336721  0.17284 -0.00183128
CA -0.115888 -0.1073297 -0.231213  0.1728385  0.71388 -0.01895968
TI  0.018507  0.0080556  0.005828 -0.0018313 -0.01896  0.00081815

Linear Coeficients:
             SI       AL     FE      MG     CA     TI
Attic    57.784 -107.297 319.31 -152.94 241.66 3813.6
Eritrean 52.523  -86.545 306.58 -165.71 242.36 3734.1

Constants:
   Attic Eritrean 
   -4346    -4139 
                          
Apparent error rate 0.1111

Classification table 
          Predicted
Actual     Attic Eritrean
  Attic       12        1
  Eritrean     2       12

Confusion matrix 
          Predicted
Actual     Attic Eritrean
  Attic    0.923    0.077
  Eritrean 0.143    0.857

Data:  olitos
                       
Apparent error rate 0.1

Classification table 
      Predicted
Actual  1  2  3  4
     1 45  2  2  1
     2  0 25  0  0
     3  4  1 27  2
     4  0  0  0 11

Confusion matrix 
      Predicted
Actual     1     2     3     4
     1 0.900 0.040 0.040 0.020
     2 0.000 1.000 0.000 0.000
     3 0.118 0.029 0.794 0.059
     4 0.000 0.000 0.000 1.000
===================================================
> #dodata(method="fsa")
> 
> proc.time()
   user  system elapsed 
   3.98    0.50    4.46