R Under development (unstable) (2024-08-17 r87027 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(robustbase)
> 
> source(system.file("xtraR/test_MCD.R", package = "robustbase"))#-> doMCDdata
> ##          ../inst/xtraR/test_MCD.R
> ## instead of relying on  system.file("test-tools-1.R", package="Matrix"):
> source(system.file("xtraR/test-tools.R", package = "robustbase")) # showProc.time(), relErr()
> showProc.time()
Time (user system elapsed): 0 0 0 
> 
> ## -- now do it:
> options(digits = 5)
> set.seed(101) # <<-- sub-sampling algorithm now based on R's RNG and seed
> doMCDdata()

Call:  doMCDdata() 
Data Set               n   p  h(alf) LOG(obj)
=============================================
            bushfire  38   5  22    18.135810 
Best subsample: 
 [1]  1  2  3  4  5  6 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Outliers:  16 : 
 [1]  7  8  9 10 11 12 29 30 31 32 33 34 35 36 37 38
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=22); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  18.1 

Robust Estimate of Location:
 V1   V2   V3   V4   V5  
105  147  274  218  279  
Robust Estimate of Covariance:
       V1     V2     V3    V4    V5
V1    346    268  -1692  -381  -311
V2    268    236  -1125  -230  -194
V3  -1692  -1125   9993  2455  1951
V4   -381   -230   2455   647   505
V5   -311   -194   1951   505   398
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               heart  12   2   7     5.678742 
Best subsample: 
[1]  1  3  4  5  7  9 11
Outliers:  0 
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=7); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  5.68 

Robust Estimate of Location:
height  weight  
  38.3    33.1  
Robust Estimate of Covariance:
        height  weight
height     135     259
weight     259     564
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            starsCYG  47   2  25    -8.031215 
Best subsample: 
 [1]  1  2  4  6  8 10 12 13 16 24 25 26 28 32 33 37 38 39 40 41 42 43 44 45 46
Outliers:  7 : 
[1]  7  9 11 14 20 30 34
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=25); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -8.03 

Robust Estimate of Location:
   log.Te  log.light  
     4.41       4.95  
Robust Estimate of Covariance:
           log.Te  log.light
log.Te     0.0132     0.0394
log.light  0.0394     0.2743
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
           stackloss  21   3  12     5.472581 
Best subsample: 
 [1]  4  5  6  7  8  9 10 11 12 13 14 20
Outliers:  9 : 
[1]  1  2  3 15 16 17 18 19 21
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=12); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  5.47 

Robust Estimate of Location:
  Air.Flow  Water.Temp  Acid.Conc.  
      59.5        20.8        87.3  
Robust Estimate of Covariance:
            Air.Flow  Water.Temp  Acid.Conc.
Air.Flow        6.29        5.85        5.74
Water.Temp      5.85        9.23        6.14
Acid.Conc.      5.74        6.14       23.25
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            phosphor  18   2  10     6.878847 
Best subsample: 
 [1]  3  5  8  9 11 12 13 14 15 17
Outliers:  3 : 
[1]  1  6 10
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=10); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  6.88 

Robust Estimate of Location:
  inorg  organic  
   13.4     38.8  
Robust Estimate of Covariance:
         inorg  organic
inorg      129      130
organic    130      182
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             coleman  20   5  13     1.286808 
Best subsample: 
 [1]  2  3  4  5  7  8 12 13 14 16 17 19 20
Outliers:  7 : 
[1]  1  6  9 10 11 15 18
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=13); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  1.29 

Robust Estimate of Location:
  salaryP   fatherWc    sstatus  teacherSc  motherLev  
     2.76      48.38       6.12      25.00       6.40  
Robust Estimate of Covariance:
           salaryP  fatherWc  sstatus  teacherSc  motherLev
salaryP      0.253      1.79   -0.266      0.151      0.075
fatherWc     1.786   1303.38  330.496     12.604     34.503
sstatus     -0.266    330.50  119.888      3.833     10.131
teacherSc    0.151     12.60    3.833      0.785      0.555
motherLev    0.075     34.50   10.131      0.555      1.043
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            salinity  28   3  16     1.326364 
Best subsample: 
 [1]  1  2  6  7  8 12 13 14 18 20 21 22 25 26 27 28
Outliers:  4 : 
[1]  5 16 23 24
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=16); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  1.33 

Robust Estimate of Location:
   X1     X2     X3  
10.08   2.78  22.78  
Robust Estimate of Covariance:
       X1     X2     X3
X1  10.44   1.01  -3.19
X2   1.01   3.83  -1.44
X3  -3.19  -1.44   2.39
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                wood  20   5  13   -36.270094 
Best subsample: 
 [1]  1  2  3  5  9 10 12 13 14 15 17 18 20
Outliers:  7 : 
[1]  4  6  7  8 11 16 19
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=13); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -36.3 

Robust Estimate of Location:
   x1     x2     x3     x4     x5  
0.587  0.122  0.531  0.538  0.892  
Robust Estimate of Covariance:
           x1         x2         x3         x4         x5
x1   0.010025   1.88e-03   0.003153  -0.000586  -1.63e-03
x2   0.001881   4.85e-04   0.001269  -0.000052   2.36e-05
x3   0.003153   1.27e-03   0.006632  -0.000871   3.52e-04
x4  -0.000586  -5.20e-05  -0.000871   0.002846   1.83e-03
x5  -0.001630   2.36e-05   0.000352   0.001828   2.77e-03
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                 hbk  75   3  39    -1.047858 
Best subsample: 
 [1] 15 16 17 18 19 20 21 22 23 24 26 27 31 32 33 35 36 37 38 40 43 49 50 51 54
[26] 55 56 58 59 61 63 64 66 67 70 71 72 73 74
Outliers:  14 : 
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=39); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -1.05 

Robust Estimate of Location:
  X1    X2    X3  
1.54  1.78  1.69  
Robust Estimate of Covariance:
       X1     X2     X3
X1  1.227  0.055  0.127
X2  0.055  1.249  0.153
X3  0.127  0.153  1.160
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             Animals  28   2  15    14.555543 
Best subsample: 
 [1]  1  3  4  5 10 11 17 18 19 20 21 22 23 26 27
Outliers:  14 : 
 [1]  2  6  7  8  9 12 13 14 15 16 23 24 25 28
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=15); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  14.6 

Robust Estimate of Location:
 body  brain  
 18.7   64.9  
Robust Estimate of Covariance:
       body  brain
body    929   1576
brain  1576   5646
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                milk  86   8  47   -28.837261 
Best subsample: 
 [1]  5  7  8  9 10 21 22 24 30 31 32 33 34 35 38 39 45 46 51 53 54 55 56 57 58
[26] 59 60 61 62 63 64 65 66 67 68 69 71 72 76 78 79 80 81 82 83 84 86
Outliers:  20 : 
 [1]  1  2  3 11 12 13 14 15 16 17 18 20 27 41 44 47 70 74 75 77
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=47); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -28.8 

Robust Estimate of Location:
    X1      X2      X3      X4      X5      X6      X7      X8  
  1.03   35.87   33.09   26.15   25.13   25.06  123.14   14.39  
Robust Estimate of Covariance:
          X1        X2        X3        X4        X5        X6        X7
X1  3.86e-07  0.000115  0.000135  0.000132  0.000118  0.000101  0.000538
X2  1.15e-04  1.901695  0.321524  0.228041  0.164447  0.261330  1.804532
X3  1.35e-04  0.321524  1.189750  0.869795  0.851445  0.857952  0.777883
X4  1.32e-04  0.228041  0.869795  0.684723  0.651039  0.652613  0.603585
X5  1.18e-04  0.164447  0.851445  0.651039  0.680275  0.655047  0.608406
X6  1.01e-04  0.261330  0.857952  0.652613  0.655047  0.680328  0.601059
X7  5.38e-04  1.804532  0.777883  0.603585  0.608406  0.601059  4.022100
X8  1.29e-05  0.238712  0.201708  0.132675  0.115217  0.125472  0.389816
          X8
X1  1.29e-05
X2  2.39e-01
X3  2.02e-01
X4  1.33e-01
X5  1.15e-01
X6  1.25e-01
X7  3.90e-01
X8  1.54e-01
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
              lactic  20   2  11     0.359580 
Best subsample: 
 [1]  1  2  3  4  5  7  8  9 10 11 12
Outliers:  4 : 
[1] 17 18 19 20
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=11); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  0.36 

Robust Estimate of Location:
   X     Y  
3.86  5.01  
Robust Estimate of Covariance:
      X     Y
X  10.6  14.6
Y  14.6  21.3
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             pension  18   2  10    16.675508 
Best subsample: 
 [1]  1  2  3  4  5  6  8  9 11 12
Outliers:  5 : 
[1] 14 15 16 17 18
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=10); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  16.7 

Robust Estimate of Location:
  Income  Reserves  
    52.3     560.9  
Robust Estimate of Covariance:
          Income  Reserves
Income      1420     11932
Reserves   11932    208643
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               pilot  20   2  11     6.487287 
Best subsample: 
 [1]  2  3  6  7  9 12 15 16 17 18 20
Outliers:  0 
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=11); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  6.49 

Robust Estimate of Location:
    X      Y  
101.1   67.7  
Robust Estimate of Covariance:
      X     Y
X  3344  1070
Y  1070   343
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                vaso  39   2  21    -3.972244 
Best subsample: 
 [1]  3  4  8 14 18 19 20 21 22 23 24 25 26 27 28 33 34 35 37 38 39
Outliers:  4 : 
[1]  1  2 17 31
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=21); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -3.97 

Robust Estimate of Location:
Volume    Rate  
  1.16    1.72  
Robust Estimate of Covariance:
        Volume    Rate
Volume   0.313  -0.167
Rate    -0.167   0.728
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
        wagnerGrowth  63   6  35     6.569262 
Best subsample: 
 [1]  2  3  4  5  6  7  9 10 11 12 14 16 17 18 20 23 25 27 31 32 35 36 38 41 44
[26] 48 52 53 54 55 56 57 58 60 62
Outliers:  17 : 
 [1]  1  8 15 21 22 24 26 28 29 33 39 42 43 46 50 61 63
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=35); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  6.57 

Robust Estimate of Location:
Region      PA     GPA      HS     GHS       y  
11.318  34.050  -2.049   2.498   0.289   6.650  
Robust Estimate of Covariance:
         Region       PA     GPA       HS      GHS        y
Region   32.797   14.685  -1.650  -1.0301  -0.2907  -10.601
PA       14.685   25.961  -6.038  -1.5554   0.1318  -25.877
GPA      -1.650   -6.038   5.352   0.3838  -0.1690    4.583
HS       -1.030   -1.555   0.384   0.9156  -0.0486    3.194
GHS      -0.291    0.132  -0.169  -0.0486   0.1205   -0.209
y       -10.601  -25.877   4.583   3.1936  -0.2085   70.718
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                fish 158   6  82     8.878062 
Best subsample: 
 [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
[20]  20  21  22  23  24  25  26  27  28  30  31  32  35  36  37  42  43  44  45
[39]  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60 107 109 110 111
[58] 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
[77] 131 134 135 136 137 139
Outliers:  69 : 
 [1]  29  38  39  40  41  61  62  63  64  65  66  67  68  69  70  71  72  73  74
[20]  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93
[39]  94  95  96  97  98  99 100 101 102 103 104 133 140 141 142 143 144 145 146
[58] 147 148 149 150 151 152 153 154 155 156 157 158
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=82); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  8.88 

Robust Estimate of Location:
 Weight  Length1  Length2  Length3   Height    Width  
  331.9     24.4     26.6     29.7     31.2     14.7  
Robust Estimate of Covariance:
          Weight  Length1  Length2  Length3   Height    Width
Weight   75099.7   1549.5   1699.2  2119.44  1638.37  -69.924
Length1   1549.5     35.3     38.4    47.11    32.40   -1.697
Length2   1699.2     38.4     41.9    51.43    35.78   -1.797
Length3   2119.4     47.1     51.4    64.10    47.40   -2.549
Height    1638.4     32.4     35.8    47.40    48.97   -2.586
Width      -69.9     -1.7     -1.8    -2.55    -2.59    0.833
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             pottery  27   6  17   -10.586933 
Best subsample: 
 [1]  1  2  4  5  6  9 10 11 13 14 15 19 20 21 22 26 27
Outliers:  9 : 
[1]  3  8 12 16 17 18 23 24 25
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=17); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -10.6 

Robust Estimate of Location:
    SI      AL      FE      MG      CA      TI  
54.983  15.206   9.700   3.817   5.211   0.859  
Robust Estimate of Covariance:
         SI       AL       FE       MG       CA        TI
SI  20.5823   2.2874  -0.0204   2.1265  -1.8023   0.08821
AL   2.2874   4.0361  -0.6302  -2.4997   0.2084  -0.02038
FE  -0.0204  -0.6302   0.2780   0.5338  -0.3512   0.01427
MG   2.1265  -2.4997   0.5338   2.7956  -0.1579   0.02847
CA  -1.8023   0.2084  -0.3512  -0.1579   1.2324  -0.03465
TI   0.0882  -0.0204   0.0143   0.0285  -0.0347   0.00175
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                rice 105   6  56   -14.438945 
Best subsample: 
 [1]   2   4   6   8  10  12  15  17  18  21  24  27  29  30  31  32  33  34  36
[20]  37  38  41  44  45  47  51  52  53  55  59  60  61  65  67  70  72  76  78
[39]  79  80  81  82  83  84  85  86  90  92  93  94  95  97  98  99 102 105
Outliers:  11 : 
 [1]  9 28 40 42 49 58 62 64 71 75 77
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=56); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -14.4 

Robust Estimate of Location:
             Favor          Appearance               Taste          Stickiness  
           -0.2844              0.0786             -0.1453              0.0378  
         Toughness  Overall_evaluation  
            0.0833             -0.2363  
Robust Estimate of Covariance:
                     Favor  Appearance   Taste  Stickiness  Toughness
Favor                0.453       0.373   0.449       0.425     -0.198
Appearance           0.373       0.598   0.576       0.568     -0.318
Taste                0.449       0.576   0.723       0.695     -0.379
Stickiness           0.425       0.568   0.695       0.834     -0.470
Toughness           -0.198      -0.318  -0.379      -0.470      0.439
Overall_evaluation   0.534       0.661   0.815       0.843     -0.465
                    Overall_evaluation
Favor                            0.534
Appearance                       0.661
Taste                            0.815
Stickiness                       0.843
Toughness                       -0.465
Overall_evaluation               0.986
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                un86  73   7  40    17.017767 
Best subsample: 
 [1]  1  9 10 12 14 16 17 18 20 23 24 26 27 31 33 37 39 41 42 45 47 48 49 50 51
[26] 52 55 56 57 60 61 62 63 64 65 67 70 71 72 73
Outliers:  29 : 
 [1]  3  4  5  6  7  8 11 13 15 19 21 22 28 29 30 35 36 38 40 43 44 46 53 54 58
[26] 59 66 68 69
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=40); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  17 

Robust Estimate of Location:
   POP     MOR     CAR      DR     GNP     DEN      TB  
20.364  69.750   6.463   0.859   1.133  59.998   0.439  
Robust Estimate of Covariance:
         POP      MOR       CAR        DR       GNP      DEN       TB
POP  575.827   243.29   -12.910   -2.4098   -3.0456   160.82   0.4208
MOR  243.291  2376.56  -282.081  -33.9548  -33.9168  -718.68  -1.0522
CAR  -12.910  -282.08    56.808    5.6651    6.4636    86.27   0.2616
DR    -2.410   -33.95     5.665    0.9009    0.5568    18.60   0.0154
GNP   -3.046   -33.92     6.464    0.5568    1.3929    10.67   0.0067
DEN  160.825  -718.68    86.269   18.6034   10.6747  2512.64  -1.1705
TB     0.421    -1.05     0.262    0.0154    0.0067    -1.17   0.0181
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               wages  36   9  23    25.658041 
Best subsample: 
 [1]  1  2  3  6  7  8 10 11 12 14 15 17 20 21 22 23 25 26 27 33 34 35 36
Outliers:  13 : 
 [1]  4  5  9 13 16 18 19 24 28 29 30 31 32
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=23); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  25.7 

Robust Estimate of Location:
    HRS     RATE     ERSP     ERNO     NEIN    ASSET      AGE      DEP  
2140.17     2.85  1133.30   307.48   343.26  6539.43    39.57     2.44  
 SCHOOL  
  10.07  
Robust Estimate of Covariance:
              HRS       RATE       ERSP       ERNO      NEIN     ASSET
HRS       4433.91    19.7358   -3585.03   -990.563    8227.4    184546
RATE        19.74     0.2393       8.06      1.048      59.2      1373
ERSP     -3585.03     8.0565   12399.96    995.108   -4363.3    -78026
ERNO      -990.56     1.0481     995.11   2190.581    -426.0     -9925
NEIN      8227.37    59.1712   -4363.27   -425.985   19585.3    441574
ASSET   184546.39  1373.0630  -78025.61  -9925.182  441574.2  10017473
AGE        -46.58    -0.2052      18.34     19.517     -83.0     -1898
DEP         -6.57    -0.0985      -2.85      0.499     -20.6      -471
SCHOOL      59.89     0.5677       7.54     -4.821     153.0      3541
              AGE        DEP    SCHOOL
HRS     -4.66e+01    -6.5659    59.885
RATE    -2.05e-01    -0.0985     0.568
ERSP     1.83e+01    -2.8522     7.540
ERNO     1.95e+01     0.4986    -4.821
NEIN    -8.30e+01   -20.6329   153.022
ASSET   -1.90e+03  -471.1344  3540.557
AGE      7.72e-01     0.0412    -0.684
DEP      4.12e-02     0.0873    -0.240
SCHOOL  -6.84e-01    -0.2402     1.453
--------------------------------------------------------
========================================================
> doMCDdata(method="DetMCD"); warnings()

Call:  doMCDdata(method = "DetMCD") 
Data Set               n   p  h(alf) LOG(obj)
=============================================
            bushfire  38   5  22    18.135810 
Best subsample: 
 [1]  1  2  3  4  5  6 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Outliers:  16 : 
 [1]  7  8  9 10 11 12 29 30 31 32 33 34 35 36 37 38
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=22)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 2, 3, 6; C-step iterations: 2, 3, 3, 2, 2, 3
Log(Det.):  18.1 

Robust Estimate of Location:
 V1   V2   V3   V4   V5  
105  147  274  218  279  
Robust Estimate of Covariance:
       V1     V2     V3    V4    V5
V1    346    268  -1692  -381  -311
V2    268    236  -1125  -230  -194
V3  -1692  -1125   9993  2455  1951
V4   -381   -230   2455   647   505
V5   -311   -194   1951   505   398
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               heart  12   2   7     5.678742 
Best subsample: 
[1]  1  3  4  5  7  9 11
Outliers:  0 
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=7)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 6; C-step iterations: 2, 2, 2, 2, 2, 2
Log(Det.):  5.68 

Robust Estimate of Location:
height  weight  
  38.3    33.1  
Robust Estimate of Covariance:
        height  weight
height     135     259
weight     259     564
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            starsCYG  47   2  25    -8.028718 
Best subsample: 
 [1]  1  6 10 12 13 16 23 24 25 26 28 31 32 33 37 38 39 40 41 42 43 44 45 46 47
Outliers:  7 : 
[1]  7  9 11 14 20 30 34
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=25)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 5; C-step iterations: 4, 4, 4, 4, 4, 4
Log(Det.):  -8.03 

Robust Estimate of Location:
   log.Te  log.light  
     4.41       4.95  
Robust Estimate of Covariance:
           log.Te  log.light
log.Te     0.0132     0.0394
log.light  0.0394     0.2743
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
           stackloss  21   3  12     6.577286 
Best subsample: 
 [1]  4  5  6  7  8  9 11 13 16 18 19 20
Outliers:  2 : 
[1] 1 2
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=12)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 6; C-step iterations: 3, 3, 3, 3, 2, 2
Log(Det.):  6.58 

Robust Estimate of Location:
  Air.Flow  Water.Temp  Acid.Conc.  
      58.4        20.5        86.1  
Robust Estimate of Covariance:
            Air.Flow  Water.Temp  Acid.Conc.
Air.Flow        56.3       13.33       26.68
Water.Temp      13.3        8.28        6.98
Acid.Conc.      26.7        6.98       37.97
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            phosphor  18   2  10     7.732906 
Best subsample: 
 [1]  2  4  5  7  8  9 11 12 14 16
Outliers:  1 : 
[1] 6
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=10)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 4; C-step iterations: 3, 3, 3, 3, 3, 3
Log(Det.):  7.73 

Robust Estimate of Location:
  inorg  organic  
   12.5     40.8  
Robust Estimate of Covariance:
         inorg  organic
inorg      124      101
organic    101      197
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             coleman  20   5  13     2.149184 
Best subsample: 
 [1]  3  4  5  7  8 12 13 14 16 17 18 19 20
Outliers:  2 : 
[1]  6 10
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=13)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 5; C-step iterations: 2, 2, 2, 2, 2, 3
Log(Det.):  2.15 

Robust Estimate of Location:
  salaryP   fatherWc    sstatus  teacherSc  motherLev  
     2.76      41.08       2.76      25.01       6.27  
Robust Estimate of Covariance:
           salaryP  fatherWc  sstatus  teacherSc  motherLev
salaryP      0.391      2.96     2.15      0.447      0.110
fatherWc     2.956   1358.64   442.72     12.235     32.842
sstatus      2.146    442.72   205.59      6.464     11.382
teacherSc    0.447     12.23     6.46      1.179      0.510
motherLev    0.110     32.84    11.38      0.510      0.919
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            salinity  28   3  16     1.940763 
Best subsample: 
 [1]  1  8 10 12 13 14 15 17 18 20 21 22 25 26 27 28
Outliers:  2 : 
[1]  5 16
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=16)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 4, 5; C-step iterations: 2, 2, 2, 3, 2, 2
Log(Det.):  1.94 

Robust Estimate of Location:
   X1     X2     X3  
10.50   2.58  23.12  
Robust Estimate of Covariance:
          X1        X2     X3
X1  10.90243  -0.00457  -1.46
X2  -0.00457   3.85051  -1.95
X3  -1.46156  -1.94604   3.21
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                wood  20   5  13   -35.240819 
Best subsample: 
 [1]  1  2  3  5  9 11 12 13 14 15 17 18 20
Outliers:  4 : 
[1]  4  6  8 19
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=13)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2; C-step iterations: 2, 2, 2, 2, 2, 2
Log(Det.):  -35.2 

Robust Estimate of Location:
   x1     x2     x3     x4     x5  
0.582  0.125  0.530  0.534  0.888  
Robust Estimate of Covariance:
           x1         x2         x3         x4         x5
x1   0.010502   0.001810   2.08e-03  -0.000641  -9.61e-04
x2   0.001810   0.000555   8.76e-04  -0.000203  -4.70e-05
x3   0.002081   0.000876   5.60e-03  -0.001106  -1.26e-05
x4  -0.000641  -0.000203  -1.11e-03   0.004266   2.60e-03
x5  -0.000961  -0.000047  -1.26e-05   0.002602   2.95e-03
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                 hbk  75   3  39    -1.045501 
Best subsample: 
 [1] 15 17 18 19 20 21 22 23 24 26 27 28 29 32 33 35 36 38 40 41 43 48 49 50 51
[26] 54 55 56 58 59 63 64 66 67 70 71 72 73 74
Outliers:  14 : 
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=39)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 6; C-step iterations: 5, 5, 5, 5, 4, 5
Log(Det.):  -1.05 

Robust Estimate of Location:
  X1    X2    X3  
1.54  1.78  1.69  
Robust Estimate of Covariance:
       X1     X2     X3
X1  1.227  0.055  0.127
X2  0.055  1.249  0.153
X3  0.127  0.153  1.160
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             Animals  28   2  15    14.555543 
Best subsample: 
 [1]  1  3  4  5 10 11 17 18 19 20 21 22 23 26 27
Outliers:  14 : 
 [1]  2  6  7  8  9 12 13 14 15 16 23 24 25 28
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=15)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 5, 6; C-step iterations: 2, 2, 2, 2, 2, 2
Log(Det.):  14.6 

Robust Estimate of Location:
 body  brain  
 18.7   64.9  
Robust Estimate of Covariance:
       body  brain
body    929   1576
brain  1576   5646
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                milk  86   8  47   -28.844954 
Best subsample: 
 [1]  5  8  9 10 21 22 23 24 26 30 31 32 33 34 35 36 37 38 39 46 51 53 54 55 56
[26] 57 58 59 60 61 62 63 64 65 66 67 68 69 71 72 76 78 79 81 83 84 86
Outliers:  20 : 
 [1]  1  2  3 11 12 13 14 15 16 17 18 20 27 41 44 47 70 74 75 77
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=47)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 5; C-step iterations: 3, 3, 4, 3, 3, 4
Log(Det.):  -28.8 

Robust Estimate of Location:
    X1      X2      X3      X4      X5      X6      X7      X8  
  1.03   35.90   33.10   26.16   25.13   25.07  123.13   14.39  
Robust Estimate of Covariance:
          X1        X2        X3        X4        X5        X6        X7
X1  4.62e-07  8.16e-05  0.000162  0.000159  0.000141  0.000132  0.000604
X2  8.16e-05  1.73e+00  0.199526  0.156489  0.081711  0.201994  1.499551
X3  1.62e-04  2.00e-01  1.148093  0.849962  0.824682  0.847271  0.650728
X4  1.59e-04  1.56e-01  0.849962  0.676140  0.638434  0.649539  0.547968
X5  1.41e-04  8.17e-02  0.824682  0.638434  0.663934  0.648983  0.531229
X6  1.32e-04  2.02e-01  0.847271  0.649539  0.648983  0.683114  0.569006
X7  6.04e-04  1.50e+00  0.650728  0.547968  0.531229  0.569006  3.702975
X8  3.53e-06  2.01e-01  0.182321  0.124043  0.103206  0.118964  0.321120
          X8
X1  3.53e-06
X2  2.01e-01
X3  1.82e-01
X4  1.24e-01
X5  1.03e-01
X6  1.19e-01
X7  3.21e-01
X8  1.44e-01
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
              lactic  20   2  11     0.359580 
Best subsample: 
 [1]  1  2  3  4  5  7  8  9 10 11 12
Outliers:  4 : 
[1] 17 18 19 20
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=11)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 5, 6; C-step iterations: 3, 3, 3, 2, 3, 3
Log(Det.):  0.36 

Robust Estimate of Location:
   X     Y  
3.86  5.01  
Robust Estimate of Covariance:
      X     Y
X  10.6  14.6
Y  14.6  21.3
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             pension  18   2  10    16.675508 
Best subsample: 
 [1]  1  2  3  4  5  6  8  9 11 12
Outliers:  5 : 
[1] 14 15 16 17 18
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=10)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 5, 6; C-step iterations: 2, 2, 2, 3, 3, 2
Log(Det.):  16.7 

Robust Estimate of Location:
  Income  Reserves  
    52.3     560.9  
Robust Estimate of Covariance:
          Income  Reserves
Income      1420     11932
Reserves   11932    208643
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               pilot  20   2  11     7.023173 
Best subsample: 
 [1]  1  2  3  4  8 11 12 13 14 15 19
Outliers:  0 
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=11)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 5, 6; C-step iterations: 2, 2, 2, 2, 2, 2
Log(Det.):  7.02 

Robust Estimate of Location:
    X      Y  
103.0   68.6  
Robust Estimate of Covariance:
      X    Y
X  2581  830
Y   830  268
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                vaso  39   2  21    -3.972244 
Best subsample: 
 [1]  3  4  8 14 18 19 20 21 22 23 24 25 26 27 28 33 34 35 37 38 39
Outliers:  4 : 
[1]  1  2 17 31
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=21)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 6; C-step iterations: 3, 3, 3, 2, 2, 3
Log(Det.):  -3.97 

Robust Estimate of Location:
Volume    Rate  
  1.16    1.72  
Robust Estimate of Covariance:
        Volume    Rate
Volume   0.313  -0.167
Rate    -0.167   0.728
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
        wagnerGrowth  63   6  35     6.511864 
Best subsample: 
 [1]  2  3  4  5  6  7  9 10 11 12 13 16 17 18 20 23 25 27 31 32 35 36 38 41 44
[26] 48 51 52 53 54 55 56 57 60 62
Outliers:  15 : 
 [1]  1  8 15 21 22 28 29 33 39 42 43 46 49 50 63
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=35)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 3; C-step iterations: 3, 3, 3, 3, 3, 3
Log(Det.):  6.51 

Robust Estimate of Location:
Region      PA     GPA      HS     GHS       y  
 10.91   33.65   -2.05    2.43    0.31    6.98  
Robust Estimate of Covariance:
         Region        PA     GPA       HS      GHS        y
Region   35.136   17.7291  -1.400  -0.6554  -0.4728  -14.930
PA       17.729   28.4297  -5.525  -1.2444  -0.0452  -29.618
GPA      -1.400   -5.5245   5.217   0.3954  -0.2152    3.825
HS       -0.655   -1.2444   0.395   0.7273  -0.0107    2.151
GHS      -0.473   -0.0452  -0.215  -0.0107   0.1728    0.844
y       -14.930  -29.6181   3.825   2.1514   0.8440   79.051
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                fish 158   6  82     8.880459 
Best subsample: 
 [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
[20]  20  21  22  23  24  25  26  27  35  36  37  42  43  44  45  46  47  48  49
[39]  50  51  52  53  54  55  56  57  58  59  60 106 107 108 109 110 111 112 113
[58] 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
[77] 134 135 136 137 138 139
Outliers:  64 : 
 [1]  29  38  39  40  61  62  63  64  65  67  68  69  72  73  74  75  76  77  78
[20]  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97
[39]  98  99 100 101 102 103 104 140 141 142 143 144 145 146 147 148 149 150 151
[58] 152 153 154 155 156 157 158
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=82)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 6; C-step iterations: 7, 7, 7, 5, 6, 6
Log(Det.):  8.88 

Robust Estimate of Location:
 Weight  Length1  Length2  Length3   Height    Width  
  316.3     24.1     26.3     29.3     31.0     14.7  
Robust Estimate of Covariance:
          Weight  Length1  Length2  Length3   Height   Width
Weight   64662.2  1412.34  1541.95  1917.21  1420.83  -61.15
Length1   1412.3    34.14    37.04    45.07    29.25   -1.26
Length2   1541.9    37.04    40.26    49.04    32.21   -1.34
Length3   1917.2    45.07    49.04    60.82    43.03   -2.15
Height    1420.8    29.25    32.21    43.03    46.50   -2.66
Width      -61.1    -1.26    -1.34    -2.15    -2.66    1.02
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             pottery  27   6  17   -10.586933 
Best subsample: 
 [1]  1  2  4  5  6  9 10 11 13 14 15 19 20 21 22 26 27
Outliers:  9 : 
[1]  3  8 12 16 17 18 23 24 25
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=17)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 3; C-step iterations: 2, 2, 2, 2, 2, 2
Log(Det.):  -10.6 

Robust Estimate of Location:
    SI      AL      FE      MG      CA      TI  
54.983  15.206   9.700   3.817   5.211   0.859  
Robust Estimate of Covariance:
         SI       AL       FE       MG       CA        TI
SI  20.5823   2.2874  -0.0204   2.1265  -1.8023   0.08821
AL   2.2874   4.0361  -0.6302  -2.4997   0.2084  -0.02038
FE  -0.0204  -0.6302   0.2780   0.5338  -0.3512   0.01427
MG   2.1265  -2.4997   0.5338   2.7956  -0.1579   0.02847
CA  -1.8023   0.2084  -0.3512  -0.1579   1.2324  -0.03465
TI   0.0882  -0.0204   0.0143   0.0285  -0.0347   0.00175
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                rice 105   6  56   -14.423048 
Best subsample: 
 [1]   4   6   8  10  13  15  16  17  18  25  27  29  30  31  32  33  34  36  37
[20]  38  44  45  47  51  52  53  55  59  60  65  66  67  70  72  74  76  78  79
[39]  80  81  82  83  84  85  86  90  92  93  94  95  97  98  99 100 101 105
Outliers:  13 : 
 [1]  9 19 28 40 42 43 49 58 62 64 71 75 77
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=56)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1; C-step iterations: 3, 3, 3, 3, 5, 3
Log(Det.):  -14.4 

Robust Estimate of Location:
             Favor          Appearance               Taste          Stickiness  
           -0.2950              0.0799             -0.1555              0.0363  
         Toughness  Overall_evaluation  
            0.0530             -0.2284  
Robust Estimate of Covariance:
                     Favor  Appearance   Taste  Stickiness  Toughness
Favor                0.466       0.389   0.471       0.447     -0.198
Appearance           0.389       0.610   0.592       0.570     -0.293
Taste                0.471       0.592   0.760       0.718     -0.356
Stickiness           0.447       0.570   0.718       0.820     -0.419
Toughness           -0.198      -0.293  -0.356      -0.419      0.400
Overall_evaluation   0.557       0.669   0.838       0.846     -0.425
                    Overall_evaluation
Favor                            0.557
Appearance                       0.669
Taste                            0.838
Stickiness                       0.846
Toughness                       -0.425
Overall_evaluation               0.987
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                un86  73   7  40    17.117142 
Best subsample: 
 [1]  2  9 10 12 14 16 17 18 19 20 23 24 25 26 27 31 32 33 37 39 42 48 49 50 51
[26] 52 55 56 57 60 61 62 63 64 65 67 70 71 72 73
Outliers:  30 : 
 [1]  3  4  5  6  7  8 11 13 15 21 22 28 29 30 35 36 38 40 41 43 44 45 46 53 54
[26] 58 59 66 68 69
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=40)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 6; C-step iterations: 3, 2, 3, 3, 2, 3
Log(Det.):  17.1 

Robust Estimate of Location:
   POP     MOR     CAR      DR     GNP     DEN      TB  
17.036  68.512   6.444   0.877   1.134  64.140   0.433  
Robust Estimate of Covariance:
          POP       MOR      CAR        DR        GNP       DEN        TB
POP  361.0402   195.296    -6.28   -0.0191   -2.06758    57.896  -0.06089
MOR  195.2957  2389.391  -279.44  -33.7257  -33.85782  -920.991  -0.99323
CAR   -6.2818  -279.436    57.58    5.7749    6.58636    78.132   0.24976
DR    -0.0191   -33.726     5.77    0.9066    0.56604    16.926   0.01980
GNP   -2.0676   -33.858     6.59    0.5660    1.42442     9.285   0.00682
DEN   57.8963  -920.991    78.13   16.9262    9.28454  3530.116  -0.97487
TB    -0.0609    -0.993     0.25    0.0198    0.00682    -0.975   0.01636
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               wages  36   9  23    25.722758 
Best subsample: 
 [1]  1  2  3  6  7  8 10 11 14 15 17 20 21 22 23 25 27 29 31 33 34 35 36
Outliers:  13 : 
 [1]  4  5  9 12 13 16 18 19 24 26 28 30 32
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=23)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1; C-step iterations: 2, 2, 2, 2, 2, 2
Log(Det.):  25.7 

Robust Estimate of Location:
    HRS     RATE     ERSP     ERNO     NEIN    ASSET      AGE      DEP  
2150.30     2.90  1117.87   306.83   356.52  6861.39    39.32     2.45  
 SCHOOL  
  10.24  
Robust Estimate of Covariance:
              HRS      RATE       ERSP      ERNO      NEIN    ASSET        AGE
HRS       3933.64    15.729   -4649.70  -630.546    6647.3   149167  -3.94e+01
RATE        15.73     0.210       5.82     3.237      49.4     1151  -1.35e-01
ERSP     -4649.70     5.816   15177.00   464.307   -4624.8   -90372   5.56e+01
ERNO      -630.55     3.237     464.31  2297.265     171.8     3479   1.32e+01
NEIN      6647.32    49.379   -4624.80   171.845   16303.6   365111  -4.96e+01
ASSET   149166.83  1151.179  -90372.14  3478.864  365110.6  8242103  -1.16e+03
AGE        -39.36    -0.135      55.58    13.223     -49.6    -1164   7.22e-01
DEP         -1.61    -0.071     -17.61    -0.431     -16.4     -366  -7.67e-02
SCHOOL      46.30     0.470      -0.21     2.524     119.8     2788  -4.46e-01
              DEP    SCHOOL
HRS       -1.6112    46.295
RATE      -0.0710     0.470
ERSP     -17.6121    -0.210
ERNO      -0.4309     2.524
NEIN     -16.4023   119.836
ASSET   -366.3185  2788.094
AGE       -0.0767    -0.446
DEP        0.0849    -0.149
SCHOOL    -0.1485     1.122
--------------------------------------------------------
========================================================
> ##                        vvvv no timing for 'R CMD Rdiff' outputs
> doMCDdata(nrep = 12, time=FALSE)

Call:  doMCDdata(nrep = 12, time = FALSE) 
Data Set               n   p  h(alf) LOG(obj)
=============================================
            bushfire  38   5  22    18.135810 
Best subsample: 
 [1]  1  2  3  4  5  6 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Outliers:  16 : 
 [1]  7  8  9 10 11 12 29 30 31 32 33 34 35 36 37 38
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=22); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  18.1 

Robust Estimate of Location:
 V1   V2   V3   V4   V5  
105  147  274  218  279  
Robust Estimate of Covariance:
       V1     V2     V3    V4    V5
V1    346    268  -1692  -381  -311
V2    268    236  -1125  -230  -194
V3  -1692  -1125   9993  2455  1951
V4   -381   -230   2455   647   505
V5   -311   -194   1951   505   398
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               heart  12   2   7     5.678742 
Best subsample: 
[1]  1  3  4  5  7  9 11
Outliers:  0 
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=7); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  5.68 

Robust Estimate of Location:
height  weight  
  38.3    33.1  
Robust Estimate of Covariance:
        height  weight
height     135     259
weight     259     564
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            starsCYG  47   2  25    -8.031215 
Best subsample: 
 [1]  1  2  4  6  8 10 12 13 16 24 25 26 28 32 33 37 38 39 40 41 42 43 44 45 46
Outliers:  7 : 
[1]  7  9 11 14 20 30 34
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=25); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -8.03 

Robust Estimate of Location:
   log.Te  log.light  
     4.41       4.95  
Robust Estimate of Covariance:
           log.Te  log.light
log.Te     0.0132     0.0394
log.light  0.0394     0.2743
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
           stackloss  21   3  12     5.472581 
Best subsample: 
 [1]  4  5  6  7  8  9 10 11 12 13 14 20
Outliers:  9 : 
[1]  1  2  3 15 16 17 18 19 21
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=12); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  5.47 

Robust Estimate of Location:
  Air.Flow  Water.Temp  Acid.Conc.  
      59.5        20.8        87.3  
Robust Estimate of Covariance:
            Air.Flow  Water.Temp  Acid.Conc.
Air.Flow        6.29        5.85        5.74
Water.Temp      5.85        9.23        6.14
Acid.Conc.      5.74        6.14       23.25
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            phosphor  18   2  10     6.878847 
Best subsample: 
 [1]  3  5  8  9 11 12 13 14 15 17
Outliers:  3 : 
[1]  1  6 10
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=10); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  6.88 

Robust Estimate of Location:
  inorg  organic  
   13.4     38.8  
Robust Estimate of Covariance:
         inorg  organic
inorg      129      130
organic    130      182
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             coleman  20   5  13     1.286808 
Best subsample: 
 [1]  2  3  4  5  7  8 12 13 14 16 17 19 20
Outliers:  7 : 
[1]  1  6  9 10 11 15 18
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=13); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  1.29 

Robust Estimate of Location:
  salaryP   fatherWc    sstatus  teacherSc  motherLev  
     2.76      48.38       6.12      25.00       6.40  
Robust Estimate of Covariance:
           salaryP  fatherWc  sstatus  teacherSc  motherLev
salaryP      0.253      1.79   -0.266      0.151      0.075
fatherWc     1.786   1303.38  330.496     12.604     34.503
sstatus     -0.266    330.50  119.888      3.833     10.131
teacherSc    0.151     12.60    3.833      0.785      0.555
motherLev    0.075     34.50   10.131      0.555      1.043
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            salinity  28   3  16     1.326364 
Best subsample: 
 [1]  1  2  6  7  8 12 13 14 18 20 21 22 25 26 27 28
Outliers:  4 : 
[1]  5 16 23 24
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=16); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  1.33 

Robust Estimate of Location:
   X1     X2     X3  
10.08   2.78  22.78  
Robust Estimate of Covariance:
       X1     X2     X3
X1  10.44   1.01  -3.19
X2   1.01   3.83  -1.44
X3  -3.19  -1.44   2.39
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                wood  20   5  13   -36.270094 
Best subsample: 
 [1]  1  2  3  5  9 10 12 13 14 15 17 18 20
Outliers:  7 : 
[1]  4  6  7  8 11 16 19
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=13); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -36.3 

Robust Estimate of Location:
   x1     x2     x3     x4     x5  
0.587  0.122  0.531  0.538  0.892  
Robust Estimate of Covariance:
           x1         x2         x3         x4         x5
x1   0.010025   1.88e-03   0.003153  -0.000586  -1.63e-03
x2   0.001881   4.85e-04   0.001269  -0.000052   2.36e-05
x3   0.003153   1.27e-03   0.006632  -0.000871   3.52e-04
x4  -0.000586  -5.20e-05  -0.000871   0.002846   1.83e-03
x5  -0.001630   2.36e-05   0.000352   0.001828   2.77e-03
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                 hbk  75   3  39    -1.047858 
Best subsample: 
 [1] 15 16 17 18 19 20 21 22 23 24 26 27 31 32 33 35 36 37 38 40 43 49 50 51 54
[26] 55 56 58 59 61 63 64 66 67 70 71 72 73 74
Outliers:  14 : 
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=39); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -1.05 

Robust Estimate of Location:
  X1    X2    X3  
1.54  1.78  1.69  
Robust Estimate of Covariance:
       X1     X2     X3
X1  1.227  0.055  0.127
X2  0.055  1.249  0.153
X3  0.127  0.153  1.160
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             Animals  28   2  15    14.555543 
Best subsample: 
 [1]  1  3  4  5 10 11 17 18 19 20 21 22 23 26 27
Outliers:  14 : 
 [1]  2  6  7  8  9 12 13 14 15 16 23 24 25 28
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=15); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  14.6 

Robust Estimate of Location:
 body  brain  
 18.7   64.9  
Robust Estimate of Covariance:
       body  brain
body    929   1576
brain  1576   5646
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                milk  86   8  47   -28.893938 
Best subsample: 
 [1]  5  7  8  9 10 21 22 24 26 30 31 32 33 34 35 37 38 39 45 46 51 53 54 55 56
[26] 57 58 59 60 61 63 64 65 66 67 68 69 71 72 76 78 79 80 81 83 84 86
Outliers:  21 : 
 [1]  1  2  3 11 12 13 14 15 16 17 18 20 27 41 44 47 50 70 74 75 77
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=47); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -28.9 

Robust Estimate of Location:
    X1      X2      X3      X4      X5      X6      X7      X8  
  1.03   35.76   33.05   26.12   25.10   25.04  122.94   14.36  
Robust Estimate of Covariance:
          X1        X2       X3        X4        X5        X6        X7
X1  4.68e-07  8.92e-05  0.00018  0.000172  0.000152  0.000143  0.000625
X2  8.92e-05  1.56e+00  0.21893  0.161497  0.101095  0.197334  1.278580
X3  1.80e-04  2.19e-01  1.17765  0.868701  0.855642  0.864872  0.690044
X4  1.72e-04  1.61e-01  0.86870  0.688578  0.659177  0.660833  0.565031
X5  1.52e-04  1.01e-01  0.85564  0.659177  0.692458  0.667944  0.570607
X6  1.43e-04  1.97e-01  0.86487  0.660833  0.667944  0.693997  0.572373
X7  6.25e-04  1.28e+00  0.69004  0.565031  0.570607  0.572373  3.468208
X8  3.52e-06  1.15e-01  0.17236  0.114700  0.097445  0.107939  0.211966
          X8
X1  3.52e-06
X2  1.15e-01
X3  1.72e-01
X4  1.15e-01
X5  9.74e-02
X6  1.08e-01
X7  2.12e-01
X8  1.16e-01
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
              lactic  20   2  11     0.359580 
Best subsample: 
 [1]  1  2  3  4  5  7  8  9 10 11 12
Outliers:  4 : 
[1] 17 18 19 20
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=11); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  0.36 

Robust Estimate of Location:
   X     Y  
3.86  5.01  
Robust Estimate of Covariance:
      X     Y
X  10.6  14.6
Y  14.6  21.3
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             pension  18   2  10    16.675508 
Best subsample: 
 [1]  1  2  3  4  5  6  8  9 11 12
Outliers:  5 : 
[1] 14 15 16 17 18
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=10); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  16.7 

Robust Estimate of Location:
  Income  Reserves  
    52.3     560.9  
Robust Estimate of Covariance:
          Income  Reserves
Income      1420     11932
Reserves   11932    208643
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               pilot  20   2  11     6.487287 
Best subsample: 
 [1]  2  3  6  7  9 12 15 16 17 18 20
Outliers:  0 
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=11); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  6.49 

Robust Estimate of Location:
    X      Y  
101.1   67.7  
Robust Estimate of Covariance:
      X     Y
X  3344  1070
Y  1070   343
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                vaso  39   2  21    -3.972244 
Best subsample: 
 [1]  3  4  8 14 18 19 20 21 22 23 24 25 26 27 28 33 34 35 37 38 39
Outliers:  4 : 
[1]  1  2 17 31
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=21); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -3.97 

Robust Estimate of Location:
Volume    Rate  
  1.16    1.72  
Robust Estimate of Covariance:
        Volume    Rate
Volume   0.313  -0.167
Rate    -0.167   0.728
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
        wagnerGrowth  63   6  35     6.569262 
Best subsample: 
 [1]  2  3  4  5  6  7  9 10 11 12 14 16 17 18 20 23 25 27 31 32 35 36 38 41 44
[26] 48 52 53 54 55 56 57 58 60 62
Outliers:  17 : 
 [1]  1  8 15 21 22 24 26 28 29 33 39 42 43 46 50 61 63
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=35); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  6.57 

Robust Estimate of Location:
Region      PA     GPA      HS     GHS       y  
11.318  34.050  -2.049   2.498   0.289   6.650  
Robust Estimate of Covariance:
         Region       PA     GPA       HS      GHS        y
Region   32.797   14.685  -1.650  -1.0301  -0.2907  -10.601
PA       14.685   25.961  -6.038  -1.5554   0.1318  -25.877
GPA      -1.650   -6.038   5.352   0.3838  -0.1690    4.583
HS       -1.030   -1.555   0.384   0.9156  -0.0486    3.194
GHS      -0.291    0.132  -0.169  -0.0486   0.1205   -0.209
y       -10.601  -25.877   4.583   3.1936  -0.2085   70.718
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                fish 158   6  82     8.859084 
Best subsample: 
 [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
[20]  20  21  22  23  24  25  26  27  28  32  35  36  37  42  43  44  45  46  47
[39]  48  49  50  51  52  53  54  55  56  57  58  59  60 107 109 110 111 112 113
[58] 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
[77] 134 135 136 137 138 139
Outliers:  63 : 
 [1]  29  38  39  40  41  61  62  63  64  65  67  68  69  72  73  74  75  76  77
[20]  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96
[39]  97  98  99 100 101 102 103 104 140 142 143 144 146 147 148 149 150 151 152
[58] 153 154 155 156 157 158
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=82); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  8.86 

Robust Estimate of Location:
 Weight  Length1  Length2  Length3   Height    Width  
  329.9     24.5     26.6     29.7     31.1     14.7  
Robust Estimate of Covariance:
          Weight  Length1  Length2  Length3   Height   Width
Weight   69083.0  1477.81   1613.6  1992.62  1439.32  -62.12
Length1   1477.8    34.68     37.6    45.51    28.82   -1.31
Length2   1613.6    37.61     40.9    49.52    31.81   -1.40
Length3   1992.6    45.51     49.5    61.16    42.65   -2.25
Height    1439.3    28.82     31.8    42.65    46.74   -2.82
Width      -62.1    -1.31     -1.4    -2.25    -2.82    1.01
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             pottery  27   6  17   -10.586933 
Best subsample: 
 [1]  1  2  4  5  6  9 10 11 13 14 15 19 20 21 22 26 27
Outliers:  9 : 
[1]  3  8 12 16 17 18 23 24 25
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=17); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -10.6 

Robust Estimate of Location:
    SI      AL      FE      MG      CA      TI  
54.983  15.206   9.700   3.817   5.211   0.859  
Robust Estimate of Covariance:
         SI       AL       FE       MG       CA        TI
SI  20.5823   2.2874  -0.0204   2.1265  -1.8023   0.08821
AL   2.2874   4.0361  -0.6302  -2.4997   0.2084  -0.02038
FE  -0.0204  -0.6302   0.2780   0.5338  -0.3512   0.01427
MG   2.1265  -2.4997   0.5338   2.7956  -0.1579   0.02847
CA  -1.8023   0.2084  -0.3512  -0.1579   1.2324  -0.03465
TI   0.0882  -0.0204   0.0143   0.0285  -0.0347   0.00175
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                rice 105   6  56   -14.463986 
Best subsample: 
 [1]   2   4   6   8  10  12  15  18  21  22  24  29  30  31  32  33  34  36  37
[20]  38  41  44  45  47  51  52  53  54  55  59  61  65  67  68  69  70  72  76
[39]  78  79  80  81  82  83  84  85  86  92  93  94  95  97  98  99 102 105
Outliers:  13 : 
 [1]  9 14 19 28 40 42 49 58 62 71 75 77 89
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=56); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  -14.5 

Robust Estimate of Location:
             Favor          Appearance               Taste          Stickiness  
           -0.2731              0.0600             -0.1468              0.0646  
         Toughness  Overall_evaluation  
            0.0894             -0.2192  
Robust Estimate of Covariance:
                     Favor  Appearance   Taste  Stickiness  Toughness
Favor                0.388       0.323   0.393       0.389     -0.195
Appearance           0.323       0.503   0.494       0.494     -0.270
Taste                0.393       0.494   0.640       0.629     -0.361
Stickiness           0.389       0.494   0.629       0.815     -0.486
Toughness           -0.195      -0.270  -0.361      -0.486      0.451
Overall_evaluation   0.471       0.575   0.723       0.772     -0.457
                    Overall_evaluation
Favor                            0.471
Appearance                       0.575
Taste                            0.723
Stickiness                       0.772
Toughness                       -0.457
Overall_evaluation               0.882
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                un86  73   7  40    16.965868 
Best subsample: 
 [1]  1  9 10 12 14 16 17 18 20 23 24 26 27 31 32 33 37 39 42 45 47 48 49 50 51
[26] 52 55 56 57 60 61 62 63 64 65 67 70 71 72 73
Outliers:  31 : 
 [1]  3  4  5  6  7  8 11 13 15 19 21 22 25 28 29 30 34 35 36 38 40 43 44 46 53
[26] 54 58 59 66 68 69
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=40); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  17 

Robust Estimate of Location:
   POP     MOR     CAR      DR     GNP     DEN      TB  
21.110  70.143   6.581   0.834   1.169  53.692   0.444  
Robust Estimate of Covariance:
         POP      MOR       CAR        DR        GNP       DEN        TB
POP  589.850   246.49   -15.648   -2.0167   -3.86409   287.611   0.34871
MOR  246.492  2370.52  -287.608  -32.1359  -35.44415  -673.259  -1.06385
CAR  -15.648  -287.61    58.485    5.7597    6.63441   107.711   0.25254
DR    -2.017   -32.14     5.760    0.8406    0.59370    14.998   0.01685
GNP   -3.864   -35.44     6.634    0.5937    1.42649    16.827   0.00217
DEN  287.611  -673.26   107.711   14.9975   16.82656  1629.056  -0.45076
TB     0.349    -1.06     0.253    0.0169    0.00217    -0.451   0.01829
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               wages  36   9  23    25.781100 
Best subsample: 
 [1]  1  2  3  6  7  8  9 10 11 14 17 18 20 21 22 23 25 26 27 33 34 35 36
Outliers:  13 : 
 [1]  4  5 12 13 15 16 19 24 28 29 30 31 32
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=23); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x)
Log(Det.):  25.8 

Robust Estimate of Location:
    HRS     RATE     ERSP     ERNO     NEIN    ASSET      AGE      DEP  
2150.65     2.82  1135.17   293.00   345.61  6552.57    39.44     2.39  
 SCHOOL  
  10.09  
Robust Estimate of Covariance:
              HRS       RATE       ERSP       ERNO      NEIN    ASSET
HRS       6092.92    15.1803   -2410.41  -2.40e+03    8807.1   193759
RATE        15.18     0.2017      10.24  -9.14e-01      49.0     1142
ERSP     -2410.41    10.2403   13932.45   5.36e+02   -3271.0   -55432
ERNO     -2397.41    -0.9137     535.75   2.36e+03   -2020.8   -44920
NEIN      8807.14    48.9680   -3271.05  -2.02e+03   18314.6   409392
ASSET   193758.66  1142.4445  -55432.35  -4.49e+04  409392.2  9215780
AGE        -63.71    -0.1916      15.01   3.02e+01     -95.6    -2149
DEP         -9.89    -0.0562      -9.65   4.99e+00     -16.7     -374
SCHOOL      62.36     0.4612      23.49  -1.68e+01     136.8     3150
              AGE        DEP    SCHOOL
HRS     -6.37e+01    -9.8883    62.357
RATE    -1.92e-01    -0.0562     0.461
ERSP     1.50e+01    -9.6481    23.487
ERNO     3.02e+01     4.9941   -16.814
NEIN    -9.56e+01   -16.6945   136.752
ASSET   -2.15e+03  -373.6149  3150.225
AGE      9.46e-01     0.0972    -0.765
DEP      9.72e-02     0.0580    -0.169
SCHOOL  -7.65e-01    -0.1688     1.256
--------------------------------------------------------
========================================================
> doMCDdata(nrep = 12, time=FALSE, method="DetMCD"); warnings()

Call:  doMCDdata(nrep = 12, time = FALSE, method = "DetMCD") 
Data Set               n   p  h(alf) LOG(obj)
=============================================
            bushfire  38   5  22    18.135810 
Best subsample: 
 [1]  1  2  3  4  5  6 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Outliers:  16 : 
 [1]  7  8  9 10 11 12 29 30 31 32 33 34 35 36 37 38
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=22)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 2, 3, 6; C-step iterations: 2, 3, 3, 2, 2, 3
Log(Det.):  18.1 

Robust Estimate of Location:
 V1   V2   V3   V4   V5  
105  147  274  218  279  
Robust Estimate of Covariance:
       V1     V2     V3    V4    V5
V1    346    268  -1692  -381  -311
V2    268    236  -1125  -230  -194
V3  -1692  -1125   9993  2455  1951
V4   -381   -230   2455   647   505
V5   -311   -194   1951   505   398
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               heart  12   2   7     5.678742 
Best subsample: 
[1]  1  3  4  5  7  9 11
Outliers:  0 
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=7)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 6; C-step iterations: 2, 2, 2, 2, 2, 2
Log(Det.):  5.68 

Robust Estimate of Location:
height  weight  
  38.3    33.1  
Robust Estimate of Covariance:
        height  weight
height     135     259
weight     259     564
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            starsCYG  47   2  25    -8.028718 
Best subsample: 
 [1]  1  6 10 12 13 16 23 24 25 26 28 31 32 33 37 38 39 40 41 42 43 44 45 46 47
Outliers:  7 : 
[1]  7  9 11 14 20 30 34
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=25)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 5; C-step iterations: 4, 4, 4, 4, 4, 4
Log(Det.):  -8.03 

Robust Estimate of Location:
   log.Te  log.light  
     4.41       4.95  
Robust Estimate of Covariance:
           log.Te  log.light
log.Te     0.0132     0.0394
log.light  0.0394     0.2743
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
           stackloss  21   3  12     6.577286 
Best subsample: 
 [1]  4  5  6  7  8  9 11 13 16 18 19 20
Outliers:  2 : 
[1] 1 2
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=12)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 6; C-step iterations: 3, 3, 3, 3, 2, 2
Log(Det.):  6.58 

Robust Estimate of Location:
  Air.Flow  Water.Temp  Acid.Conc.  
      58.4        20.5        86.1  
Robust Estimate of Covariance:
            Air.Flow  Water.Temp  Acid.Conc.
Air.Flow        56.3       13.33       26.68
Water.Temp      13.3        8.28        6.98
Acid.Conc.      26.7        6.98       37.97
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            phosphor  18   2  10     7.732906 
Best subsample: 
 [1]  2  4  5  7  8  9 11 12 14 16
Outliers:  1 : 
[1] 6
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=10)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 4; C-step iterations: 3, 3, 3, 3, 3, 3
Log(Det.):  7.73 

Robust Estimate of Location:
  inorg  organic  
   12.5     40.8  
Robust Estimate of Covariance:
         inorg  organic
inorg      124      101
organic    101      197
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             coleman  20   5  13     2.149184 
Best subsample: 
 [1]  3  4  5  7  8 12 13 14 16 17 18 19 20
Outliers:  2 : 
[1]  6 10
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=13)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 5; C-step iterations: 2, 2, 2, 2, 2, 3
Log(Det.):  2.15 

Robust Estimate of Location:
  salaryP   fatherWc    sstatus  teacherSc  motherLev  
     2.76      41.08       2.76      25.01       6.27  
Robust Estimate of Covariance:
           salaryP  fatherWc  sstatus  teacherSc  motherLev
salaryP      0.391      2.96     2.15      0.447      0.110
fatherWc     2.956   1358.64   442.72     12.235     32.842
sstatus      2.146    442.72   205.59      6.464     11.382
teacherSc    0.447     12.23     6.46      1.179      0.510
motherLev    0.110     32.84    11.38      0.510      0.919
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            salinity  28   3  16     1.940763 
Best subsample: 
 [1]  1  8 10 12 13 14 15 17 18 20 21 22 25 26 27 28
Outliers:  2 : 
[1]  5 16
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=16)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 4, 5; C-step iterations: 2, 2, 2, 3, 2, 2
Log(Det.):  1.94 

Robust Estimate of Location:
   X1     X2     X3  
10.50   2.58  23.12  
Robust Estimate of Covariance:
          X1        X2     X3
X1  10.90243  -0.00457  -1.46
X2  -0.00457   3.85051  -1.95
X3  -1.46156  -1.94604   3.21
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                wood  20   5  13   -35.240819 
Best subsample: 
 [1]  1  2  3  5  9 11 12 13 14 15 17 18 20
Outliers:  4 : 
[1]  4  6  8 19
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=13)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2; C-step iterations: 2, 2, 2, 2, 2, 2
Log(Det.):  -35.2 

Robust Estimate of Location:
   x1     x2     x3     x4     x5  
0.582  0.125  0.530  0.534  0.888  
Robust Estimate of Covariance:
           x1         x2         x3         x4         x5
x1   0.010502   0.001810   2.08e-03  -0.000641  -9.61e-04
x2   0.001810   0.000555   8.76e-04  -0.000203  -4.70e-05
x3   0.002081   0.000876   5.60e-03  -0.001106  -1.26e-05
x4  -0.000641  -0.000203  -1.11e-03   0.004266   2.60e-03
x5  -0.000961  -0.000047  -1.26e-05   0.002602   2.95e-03
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                 hbk  75   3  39    -1.045501 
Best subsample: 
 [1] 15 17 18 19 20 21 22 23 24 26 27 28 29 32 33 35 36 38 40 41 43 48 49 50 51
[26] 54 55 56 58 59 63 64 66 67 70 71 72 73 74
Outliers:  14 : 
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=39)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 6; C-step iterations: 5, 5, 5, 5, 4, 5
Log(Det.):  -1.05 

Robust Estimate of Location:
  X1    X2    X3  
1.54  1.78  1.69  
Robust Estimate of Covariance:
       X1     X2     X3
X1  1.227  0.055  0.127
X2  0.055  1.249  0.153
X3  0.127  0.153  1.160
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             Animals  28   2  15    14.555543 
Best subsample: 
 [1]  1  3  4  5 10 11 17 18 19 20 21 22 23 26 27
Outliers:  14 : 
 [1]  2  6  7  8  9 12 13 14 15 16 23 24 25 28
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=15)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 5, 6; C-step iterations: 2, 2, 2, 2, 2, 2
Log(Det.):  14.6 

Robust Estimate of Location:
 body  brain  
 18.7   64.9  
Robust Estimate of Covariance:
       body  brain
body    929   1576
brain  1576   5646
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                milk  86   8  47   -28.844954 
Best subsample: 
 [1]  5  8  9 10 21 22 23 24 26 30 31 32 33 34 35 36 37 38 39 46 51 53 54 55 56
[26] 57 58 59 60 61 62 63 64 65 66 67 68 69 71 72 76 78 79 81 83 84 86
Outliers:  20 : 
 [1]  1  2  3 11 12 13 14 15 16 17 18 20 27 41 44 47 70 74 75 77
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=47)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 5; C-step iterations: 3, 3, 4, 3, 3, 4
Log(Det.):  -28.8 

Robust Estimate of Location:
    X1      X2      X3      X4      X5      X6      X7      X8  
  1.03   35.90   33.10   26.16   25.13   25.07  123.13   14.39  
Robust Estimate of Covariance:
          X1        X2        X3        X4        X5        X6        X7
X1  4.62e-07  8.16e-05  0.000162  0.000159  0.000141  0.000132  0.000604
X2  8.16e-05  1.73e+00  0.199526  0.156489  0.081711  0.201994  1.499551
X3  1.62e-04  2.00e-01  1.148093  0.849962  0.824682  0.847271  0.650728
X4  1.59e-04  1.56e-01  0.849962  0.676140  0.638434  0.649539  0.547968
X5  1.41e-04  8.17e-02  0.824682  0.638434  0.663934  0.648983  0.531229
X6  1.32e-04  2.02e-01  0.847271  0.649539  0.648983  0.683114  0.569006
X7  6.04e-04  1.50e+00  0.650728  0.547968  0.531229  0.569006  3.702975
X8  3.53e-06  2.01e-01  0.182321  0.124043  0.103206  0.118964  0.321120
          X8
X1  3.53e-06
X2  2.01e-01
X3  1.82e-01
X4  1.24e-01
X5  1.03e-01
X6  1.19e-01
X7  3.21e-01
X8  1.44e-01
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
              lactic  20   2  11     0.359580 
Best subsample: 
 [1]  1  2  3  4  5  7  8  9 10 11 12
Outliers:  4 : 
[1] 17 18 19 20
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=11)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 5, 6; C-step iterations: 3, 3, 3, 2, 3, 3
Log(Det.):  0.36 

Robust Estimate of Location:
   X     Y  
3.86  5.01  
Robust Estimate of Covariance:
      X     Y
X  10.6  14.6
Y  14.6  21.3
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             pension  18   2  10    16.675508 
Best subsample: 
 [1]  1  2  3  4  5  6  8  9 11 12
Outliers:  5 : 
[1] 14 15 16 17 18
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=10)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 5, 6; C-step iterations: 2, 2, 2, 3, 3, 2
Log(Det.):  16.7 

Robust Estimate of Location:
  Income  Reserves  
    52.3     560.9  
Robust Estimate of Covariance:
          Income  Reserves
Income      1420     11932
Reserves   11932    208643
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               pilot  20   2  11     7.023173 
Best subsample: 
 [1]  1  2  3  4  8 11 12 13 14 15 19
Outliers:  0 
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=11)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 5, 6; C-step iterations: 2, 2, 2, 2, 2, 2
Log(Det.):  7.02 

Robust Estimate of Location:
    X      Y  
103.0   68.6  
Robust Estimate of Covariance:
      X    Y
X  2581  830
Y   830  268
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                vaso  39   2  21    -3.972244 
Best subsample: 
 [1]  3  4  8 14 18 19 20 21 22 23 24 25 26 27 28 33 34 35 37 38 39
Outliers:  4 : 
[1]  1  2 17 31
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=21)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 6; C-step iterations: 3, 3, 3, 2, 2, 3
Log(Det.):  -3.97 

Robust Estimate of Location:
Volume    Rate  
  1.16    1.72  
Robust Estimate of Covariance:
        Volume    Rate
Volume   0.313  -0.167
Rate    -0.167   0.728
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
        wagnerGrowth  63   6  35     6.511864 
Best subsample: 
 [1]  2  3  4  5  6  7  9 10 11 12 13 16 17 18 20 23 25 27 31 32 35 36 38 41 44
[26] 48 51 52 53 54 55 56 57 60 62
Outliers:  15 : 
 [1]  1  8 15 21 22 28 29 33 39 42 43 46 49 50 63
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=35)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 3; C-step iterations: 3, 3, 3, 3, 3, 3
Log(Det.):  6.51 

Robust Estimate of Location:
Region      PA     GPA      HS     GHS       y  
 10.91   33.65   -2.05    2.43    0.31    6.98  
Robust Estimate of Covariance:
         Region        PA     GPA       HS      GHS        y
Region   35.136   17.7291  -1.400  -0.6554  -0.4728  -14.930
PA       17.729   28.4297  -5.525  -1.2444  -0.0452  -29.618
GPA      -1.400   -5.5245   5.217   0.3954  -0.2152    3.825
HS       -0.655   -1.2444   0.395   0.7273  -0.0107    2.151
GHS      -0.473   -0.0452  -0.215  -0.0107   0.1728    0.844
y       -14.930  -29.6181   3.825   2.1514   0.8440   79.051
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                fish 158   6  82     8.880459 
Best subsample: 
 [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
[20]  20  21  22  23  24  25  26  27  35  36  37  42  43  44  45  46  47  48  49
[39]  50  51  52  53  54  55  56  57  58  59  60 106 107 108 109 110 111 112 113
[58] 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
[77] 134 135 136 137 138 139
Outliers:  64 : 
 [1]  29  38  39  40  61  62  63  64  65  67  68  69  72  73  74  75  76  77  78
[20]  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97
[39]  98  99 100 101 102 103 104 140 141 142 143 144 145 146 147 148 149 150 151
[58] 152 153 154 155 156 157 158
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=82)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 6; C-step iterations: 7, 7, 7, 5, 6, 6
Log(Det.):  8.88 

Robust Estimate of Location:
 Weight  Length1  Length2  Length3   Height    Width  
  316.3     24.1     26.3     29.3     31.0     14.7  
Robust Estimate of Covariance:
          Weight  Length1  Length2  Length3   Height   Width
Weight   64662.2  1412.34  1541.95  1917.21  1420.83  -61.15
Length1   1412.3    34.14    37.04    45.07    29.25   -1.26
Length2   1541.9    37.04    40.26    49.04    32.21   -1.34
Length3   1917.2    45.07    49.04    60.82    43.03   -2.15
Height    1420.8    29.25    32.21    43.03    46.50   -2.66
Width      -61.1    -1.26    -1.34    -2.15    -2.66    1.02
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             pottery  27   6  17   -10.586933 
Best subsample: 
 [1]  1  2  4  5  6  9 10 11 13 14 15 19 20 21 22 26 27
Outliers:  9 : 
[1]  3  8 12 16 17 18 23 24 25
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=17)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 3; C-step iterations: 2, 2, 2, 2, 2, 2
Log(Det.):  -10.6 

Robust Estimate of Location:
    SI      AL      FE      MG      CA      TI  
54.983  15.206   9.700   3.817   5.211   0.859  
Robust Estimate of Covariance:
         SI       AL       FE       MG       CA        TI
SI  20.5823   2.2874  -0.0204   2.1265  -1.8023   0.08821
AL   2.2874   4.0361  -0.6302  -2.4997   0.2084  -0.02038
FE  -0.0204  -0.6302   0.2780   0.5338  -0.3512   0.01427
MG   2.1265  -2.4997   0.5338   2.7956  -0.1579   0.02847
CA  -1.8023   0.2084  -0.3512  -0.1579   1.2324  -0.03465
TI   0.0882  -0.0204   0.0143   0.0285  -0.0347   0.00175
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                rice 105   6  56   -14.423048 
Best subsample: 
 [1]   4   6   8  10  13  15  16  17  18  25  27  29  30  31  32  33  34  36  37
[20]  38  44  45  47  51  52  53  55  59  60  65  66  67  70  72  74  76  78  79
[39]  80  81  82  83  84  85  86  90  92  93  94  95  97  98  99 100 101 105
Outliers:  13 : 
 [1]  9 19 28 40 42 43 49 58 62 64 71 75 77
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=56)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1; C-step iterations: 3, 3, 3, 3, 5, 3
Log(Det.):  -14.4 

Robust Estimate of Location:
             Favor          Appearance               Taste          Stickiness  
           -0.2950              0.0799             -0.1555              0.0363  
         Toughness  Overall_evaluation  
            0.0530             -0.2284  
Robust Estimate of Covariance:
                     Favor  Appearance   Taste  Stickiness  Toughness
Favor                0.466       0.389   0.471       0.447     -0.198
Appearance           0.389       0.610   0.592       0.570     -0.293
Taste                0.471       0.592   0.760       0.718     -0.356
Stickiness           0.447       0.570   0.718       0.820     -0.419
Toughness           -0.198      -0.293  -0.356      -0.419      0.400
Overall_evaluation   0.557       0.669   0.838       0.846     -0.425
                    Overall_evaluation
Favor                            0.557
Appearance                       0.669
Taste                            0.838
Stickiness                       0.846
Toughness                       -0.425
Overall_evaluation               0.987
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                un86  73   7  40    17.117142 
Best subsample: 
 [1]  2  9 10 12 14 16 17 18 19 20 23 24 25 26 27 31 32 33 37 39 42 48 49 50 51
[26] 52 55 56 57 60 61 62 63 64 65 67 70 71 72 73
Outliers:  30 : 
 [1]  3  4  5  6  7  8 11 13 15 21 22 28 29 30 35 36 38 40 41 43 44 45 46 53 54
[26] 58 59 66 68 69
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=40)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1, 2, 3, 4, 6; C-step iterations: 3, 2, 3, 3, 2, 3
Log(Det.):  17.1 

Robust Estimate of Location:
   POP     MOR     CAR      DR     GNP     DEN      TB  
17.036  68.512   6.444   0.877   1.134  64.140   0.433  
Robust Estimate of Covariance:
          POP       MOR      CAR        DR        GNP       DEN        TB
POP  361.0402   195.296    -6.28   -0.0191   -2.06758    57.896  -0.06089
MOR  195.2957  2389.391  -279.44  -33.7257  -33.85782  -920.991  -0.99323
CAR   -6.2818  -279.436    57.58    5.7749    6.58636    78.132   0.24976
DR    -0.0191   -33.726     5.77    0.9066    0.56604    16.926   0.01980
GNP   -2.0676   -33.858     6.59    0.5660    1.42442     9.285   0.00682
DEN   57.8963  -920.991    78.13   16.9262    9.28454  3530.116  -0.97487
TB    -0.0609    -0.993     0.25    0.0198    0.00682    -0.975   0.01636
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               wages  36   9  23    25.722758 
Best subsample: 
 [1]  1  2  3  6  7  8 10 11 14 15 17 20 21 22 23 25 27 29 31 33 34 35 36
Outliers:  13 : 
 [1]  4  5  9 12 13 16 18 19 24 26 28 30 32
------------- *MCD() result: --------------------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=23)
Call:
covMcd(x = x, nsamp = "deterministic")
iBest: 1; C-step iterations: 2, 2, 2, 2, 2, 2
Log(Det.):  25.7 

Robust Estimate of Location:
    HRS     RATE     ERSP     ERNO     NEIN    ASSET      AGE      DEP  
2150.30     2.90  1117.87   306.83   356.52  6861.39    39.32     2.45  
 SCHOOL  
  10.24  
Robust Estimate of Covariance:
              HRS      RATE       ERSP      ERNO      NEIN    ASSET        AGE
HRS       3933.64    15.729   -4649.70  -630.546    6647.3   149167  -3.94e+01
RATE        15.73     0.210       5.82     3.237      49.4     1151  -1.35e-01
ERSP     -4649.70     5.816   15177.00   464.307   -4624.8   -90372   5.56e+01
ERNO      -630.55     3.237     464.31  2297.265     171.8     3479   1.32e+01
NEIN      6647.32    49.379   -4624.80   171.845   16303.6   365111  -4.96e+01
ASSET   149166.83  1151.179  -90372.14  3478.864  365110.6  8242103  -1.16e+03
AGE        -39.36    -0.135      55.58    13.223     -49.6    -1164   7.22e-01
DEP         -1.61    -0.071     -17.61    -0.431     -16.4     -366  -7.67e-02
SCHOOL      46.30     0.470      -0.21     2.524     119.8     2788  -4.46e-01
              DEP    SCHOOL
HRS       -1.6112    46.295
RATE      -0.0710     0.470
ERSP     -17.6121    -0.210
ERNO      -0.4309     2.524
NEIN     -16.4023   119.836
ASSET   -366.3185  2788.094
AGE       -0.0767    -0.446
DEP        0.0849    -0.149
SCHOOL    -0.1485     1.122
--------------------------------------------------------
========================================================
> doMCDdata(nrep = 12, time=FALSE, method = "MASS")

Call:  doMCDdata(nrep = 12, time = FALSE, method = "MASS") 
Data Set               n   p  h(alf) LOG(obj)
=============================================
            bushfire  38   5  22    18.135810 
Best subsample: 
 [1]  1  2  3  4  5  6 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Outliers:  0 
------------- *MCD() result: --------------------------
$center
    V1     V2     V3     V4     V5 
109.44 149.56 260.32 215.12 276.88 

$cov
         V1      V2       V3      V4      V5
V1   376.67  280.03 -1628.02 -342.01 -285.07
V2   280.03  236.42  -987.14 -188.82 -162.89
V3 -1628.02 -987.14 10203.64 2369.63 1917.58
V4  -342.01 -188.82  2369.63  589.94  468.56
V5  -285.07 -162.89  1917.58  468.56  375.19

$msg
[1] "0 singular samples of size 6 out of 3000"

$crit
[1] 18.136

$best
 [1]  1  2  3  4  5  6 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

$n.obs
[1] 38

$quan
[1] 22

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               heart  12   2   7     5.678742 
Best subsample: 
[1]  1  3  4  5  7  9 11
Outliers:  0 
------------- *MCD() result: --------------------------
$center
height weight 
40.358 38.125 

$cov
       height weight
height 142.46 298.91
weight 298.91 679.01

$msg
[1] "0 singular samples of size 3 out of 220"

$crit
[1] 5.6787

$best
[1]  1  3  4  5  7  9 11

$n.obs
[1] 12

$quan
[1] 7

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            starsCYG  47   2  25    -8.031215 
Best subsample: 
 [1]  1  2  4  6  8 10 12 13 16 24 25 26 28 32 33 37 38 39 40 41 42 43 44 45 46
Outliers:  0 
------------- *MCD() result: --------------------------
$center
   log.Te log.light 
    4.409     4.949 

$cov
            log.Te log.light
log.Te    0.011789  0.035179
log.light 0.035179  0.244869

$msg
[1] "12 singular samples of size 3 out of 1500"

$crit
[1] -8.0312

$best
 [1]  1  2  4  6  8 10 12 13 16 24 25 26 28 32 33 37 38 39 40 41 42 43 44 45 46

$n.obs
[1] 47

$quan
[1] 25

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
           stackloss  21   3  12     5.472581 
Best subsample: 
 [1]  4  5  6  7  8  9 10 11 12 13 14 20
Outliers:  0 
------------- *MCD() result: --------------------------
$center
  Air.Flow Water.Temp Acid.Conc. 
    56.706     20.235     85.529 

$cov
           Air.Flow Water.Temp Acid.Conc.
Air.Flow    23.4706     7.5735    16.1029
Water.Temp   7.5735     6.3162     5.3676
Acid.Conc.  16.1029     5.3676    32.3897

$msg
[1] "88 singular samples of size 4 out of 2000"

$crit
[1] 5.4726

$best
 [1]  4  5  6  7  8  9 10 11 12 13 14 20

$n.obs
[1] 21

$quan
[1] 12

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            phosphor  18   2  10     6.878847 
Best subsample: 
 [1]  3  5  8  9 11 12 13 14 15 17
Outliers:  0 
------------- *MCD() result: --------------------------
$center
  inorg organic 
 15.215  39.385 

$cov
         inorg organic
inorg    95.47  116.49
organic 116.49  171.76

$msg
[1] "1 singular samples of size 3 out of 816"

$crit
[1] 6.8788

$best
 [1]  3  5  8  9 11 12 13 14 15 17

$n.obs
[1] 18

$quan
[1] 10

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             coleman  20   5  13     1.286808 
Best subsample: 
 [1]  2  3  4  5  7  8 12 13 14 16 17 19 20
Outliers:  0 
------------- *MCD() result: --------------------------
$center
  salaryP  fatherWc   sstatus teacherSc motherLev 
   2.8253   44.6267    4.7133   25.1240    6.3320 

$cov
           salaryP  fatherWc   sstatus teacherSc motherLev
salaryP    0.18916  -0.30888   0.14262   0.17971   0.02461
fatherWc  -0.30888 683.87325 196.89588   3.30523  17.29381
sstatus    0.14262 196.89588  85.94311   1.68507   5.58631
teacherSc  0.17971   3.30523   1.68507   0.51571   0.21891
motherLev  0.02461  17.29381   5.58631   0.21891   0.50172

$msg
[1] "0 singular samples of size 6 out of 3000"

$crit
[1] 1.2868

$best
 [1]  2  3  4  5  7  8 12 13 14 16 17 19 20

$n.obs
[1] 20

$quan
[1] 13

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
            salinity  28   3  16     1.326364 
Best subsample: 
 [1]  1  2  6  7  8 12 13 14 18 20 21 22 25 26 27 28
Outliers:  0 
------------- *MCD() result: --------------------------
$center
     X1      X2      X3 
10.0826  2.7826 22.7777 

$cov
         X1       X2      X3
X1  9.14332  0.88241 -2.7916
X2  0.88241  3.35968 -1.2622
X3 -2.79160 -1.26222  2.0924

$msg
[1] "9 singular samples of size 4 out of 2000"

$crit
[1] 1.3264

$best
 [1]  1  2  6  7  8 12 13 14 18 20 21 22 25 26 27 28

$n.obs
[1] 28

$quan
[1] 16

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                wood  20   5  13   -36.270094 
Best subsample: 
 [1]  1  2  3  5  9 10 12 13 14 15 17 18 20
Outliers:  0 
------------- *MCD() result: --------------------------
$center
     x1      x2      x3      x4      x5 
0.57613 0.12294 0.53127 0.53760 0.88913 

$cov
            x1         x2          x3          x4          x5
x1  5.2757e-03 7.8749e-04  1.2965e-03 -2.0514e-05 -4.0002e-04
x2  7.8749e-04 2.2023e-04  5.4362e-04  2.3846e-05  2.7230e-05
x3  1.2965e-03 5.4362e-04  3.0435e-03 -7.0560e-04 -4.4395e-05
x4 -2.0514e-05 2.3846e-05 -7.0560e-04  2.1388e-03  1.3511e-03
x5 -4.0002e-04 2.7230e-05 -4.4395e-05  1.3511e-03  1.5946e-03

$msg
[1] "0 singular samples of size 6 out of 3000"

$crit
[1] -36.27

$best
 [1]  1  2  3  5  9 10 12 13 14 15 17 18 20

$n.obs
[1] 20

$quan
[1] 13

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                 hbk  75   3  39    -1.047858 
Best subsample: 
 [1] 15 16 17 18 19 20 21 22 23 24 26 27 31 32 33 35 36 37 38 40 43 49 50 51 54
[26] 55 56 58 59 61 63 64 66 67 70 71 72 73 74
Outliers:  0 
------------- *MCD() result: --------------------------
$center
    X1     X2     X3 
1.5583 1.8033 1.6600 

$cov
         X1       X2      X3
X1 1.124845 0.022175 0.15373
X2 0.022175 1.138972 0.18149
X3 0.153729 0.181492 1.04346

$msg
[1] "0 singular samples of size 4 out of 2000"

$crit
[1] -1.0479

$best
 [1] 15 16 17 18 19 20 21 22 23 24 26 27 31 32 33 35 36 37 38 40 43 49 50 51 54
[26] 55 56 58 59 61 63 64 66 67 70 71 72 73 74

$n.obs
[1] 75

$quan
[1] 39

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             Animals  28   2  15    14.555543 
Best subsample: 
 [1]  1  3  4  5 10 11 17 18 19 20 21 22 23 26 27
Outliers:  0 
------------- *MCD() result: --------------------------
$center
   body   brain 
 48.331 127.321 

$cov
        body   brain
body  4978.6  7801.4
brain 7801.4 21693.7

$msg
[1] "0 singular samples of size 3 out of 3276"

$crit
[1] 14.556

$best
 [1]  1  3  4  5 10 11 17 18 19 20 21 22 23 26 27

$n.obs
[1] 28

$quan
[1] 15

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                milk  86   8  47   -28.931843 
Best subsample: 
 [1]  5  8  9 10 22 23 24 26 30 31 32 33 34 35 37 38 39 45 46 51 53 54 55 56 57
[26] 58 59 60 61 63 64 65 66 67 68 69 71 72 76 78 79 81 83 84 86
Outliers:  0 
------------- *MCD() result: --------------------------
$center
      X1       X2       X3       X4       X5       X6       X7       X8 
  1.0302  35.7571  33.0540  26.1206  25.1000  25.0365 122.9397  14.3559 

$cov
           X1         X2         X3         X4         X5         X6         X7
X1 4.2168e-07 8.0438e-05 0.00016232 0.00015533 0.00013742 0.00012898 0.00056354
X2 8.0438e-05 1.4057e+00 0.19735023 0.14557604 0.09112903 0.17788018 1.15253456
X3 1.6232e-04 1.9735e-01 1.06155658 0.78306196 0.77129032 0.77961086 0.62201741
X4 1.5533e-04 1.4558e-01 0.78306196 0.62069636 0.59419355 0.59568612 0.50932924
X5 1.3742e-04 9.1129e-02 0.77129032 0.59419355 0.62419355 0.60209677 0.51435484
X6 1.2898e-04 1.7788e-01 0.77961086 0.59568612 0.60209677 0.62558116 0.51594726
X7 5.6354e-04 1.1525e+00 0.62201741 0.50932924 0.51435484 0.51594726 3.12630312
X8 3.1754e-06 1.0393e-01 0.15537148 0.10339299 0.08783871 0.09729826 0.19106964
           X8
X1 3.1754e-06
X2 1.0393e-01
X3 1.5537e-01
X4 1.0339e-01
X5 8.7839e-02
X6 9.7298e-02
X7 1.9107e-01
X8 1.0417e-01

$msg
[1] "30 singular samples of size 9 out of 3000"

$crit
[1] -28.932

$best
 [1]  5  8  9 10 22 23 24 26 30 31 32 33 34 35 37 38 39 45 46 51 53 54 55 56 57
[26] 58 59 60 61 63 64 65 66 67 68 69 71 72 76 78 79 81 83 84 86

$n.obs
[1] 86

$quan
[1] 47

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
              lactic  20   2  11     0.359580 
Best subsample: 
 [1]  1  2  3  4  5  7  8  9 10 11 12
Outliers:  0 
------------- *MCD() result: --------------------------
$center
    X     Y 
4.625 5.925 

$cov
       X      Y
X 12.117 15.843
Y 15.843 21.705

$msg
[1] "23 singular samples of size 3 out of 1140"

$crit
[1] 0.35958

$best
 [1]  1  2  3  4  5  7  8  9 10 11 12

$n.obs
[1] 20

$quan
[1] 11

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             pension  18   2  10    16.675508 
Best subsample: 
 [1]  1  2  3  4  5  6  8  9 11 12
Outliers:  0 
------------- *MCD() result: --------------------------
$center
  Income Reserves 
  59.371  671.279 

$cov
          Income Reserves
Income    1787.4    20057
Reserves 20056.9   329315

$msg
[1] "0 singular samples of size 3 out of 816"

$crit
[1] 16.676

$best
 [1]  1  2  3  4  5  6  8  9 11 12

$n.obs
[1] 18

$quan
[1] 10

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               pilot  20   2  11     6.487287 
Best subsample: 
 [1]  2  3  6  7  9 12 15 16 17 18 20
Outliers:  0 
------------- *MCD() result: --------------------------
$center
     X      Y 
97.647 66.529 

$cov
        X      Y
X 2761.49 876.45
Y  876.45 279.01

$msg
[1] "21 singular samples of size 3 out of 1140"

$crit
[1] 6.4873

$best
 [1]  2  3  6  7  9 12 15 16 17 18 20

$n.obs
[1] 20

$quan
[1] 11

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                vaso  39   2  21    -3.972244 
Best subsample: 
 [1]  3  4  8 14 18 19 20 21 22 23 24 25 26 27 28 33 34 35 37 38 39
Outliers:  0 
------------- *MCD() result: --------------------------
$center
Volume   Rate 
1.2528 1.6717 

$cov
         Volume     Rate
Volume  0.41213 -0.19935
Rate   -0.19935  0.68865

$msg
[1] "12 singular samples of size 3 out of 1500"

$crit
[1] -3.9722

$best
 [1]  3  4  8 14 18 19 20 21 22 23 24 25 26 27 28 33 34 35 37 38 39

$n.obs
[1] 39

$quan
[1] 21

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
        wagnerGrowth  63   6  35     6.511864 
Best subsample: 
 [1]  2  3  4  5  6  7  9 10 11 12 13 16 17 18 20 23 25 27 31 32 35 36 38 41 44
[26] 48 51 52 53 54 55 56 57 60 62
Outliers:  0 
------------- *MCD() result: --------------------------
$center
  Region       PA      GPA       HS      GHS        y 
10.91837 33.63327 -1.99857  2.49347  0.34224  7.59102 

$cov
          Region          PA      GPA        HS        GHS         y
Region  31.32653  15.7286054 -0.47426 -0.891794 -0.3977296 -12.67116
PA      15.72861  24.2037016 -4.27558 -1.253049 -0.0075054 -25.15602
GPA     -0.47426  -4.2755818  4.65617  0.236160 -0.1258220   3.50016
HS      -0.89179  -1.2530491  0.23616  0.766040 -0.0161350   2.61401
GHS     -0.39773  -0.0075054 -0.12582 -0.016135  0.2047386   0.83022
y      -12.67116 -25.1560159  3.50016  2.614013  0.8302206  72.72663

$msg
[1] "0 singular samples of size 7 out of 3000"

$crit
[1] 6.5119

$best
 [1]  2  3  4  5  6  7  9 10 11 12 13 16 17 18 20 23 25 27 31 32 35 36 38 41 44
[26] 48 51 52 53 54 55 56 57 60 62

$n.obs
[1] 63

$quan
[1] 35

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                fish 158   6  82     8.859084 
Best subsample: 
 [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
[20]  20  21  22  23  24  25  26  27  28  32  35  36  37  42  43  44  45  46  47
[39]  48  49  50  51  52  53  54  55  56  57  58  59  60 107 109 110 111 112 113
[58] 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
[77] 134 135 136 137 138 139
Outliers:  0 
------------- *MCD() result: --------------------------
$center
 Weight Length1 Length2 Length3  Height   Width 
348.230  24.800  26.995  30.037  30.954  14.774 

$cov
           Weight    Length1    Length2    Length3    Height     Width
Weight  73259.775 1601.93442 1742.15601 2089.13982 1305.5681 -15.32084
Length1  1601.934   38.83231   41.92827   49.17163   25.9685  -0.15279
Length2  1742.156   41.92827   45.35661   53.31114   28.8038  -0.17589
Length3  2089.140   49.17163   53.31114   64.01178   38.9279  -0.86682
Height   1305.568   25.96846   28.80382   38.92787   45.3144  -2.35869
Width     -15.321   -0.15279   -0.17589   -0.86682   -2.3587   1.04154

$msg
[1] "0 singular samples of size 7 out of 3000"

$crit
[1] 8.8591

$best
 [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
[20]  20  21  22  23  24  25  26  27  28  32  35  36  37  42  43  44  45  46  47
[39]  48  49  50  51  52  53  54  55  56  57  58  59  60 107 109 110 111 112 113
[58] 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
[77] 134 135 136 137 138 139

$n.obs
[1] 158

$quan
[1] 82

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
             pottery  27   6  17   -10.586933 
Best subsample: 
 [1]  1  2  4  5  6  9 10 11 13 14 15 19 20 21 22 26 27
Outliers:  0 
------------- *MCD() result: --------------------------
$center
      SI       AL       FE       MG       CA       TI 
54.98333 15.20556  9.70000  3.81667  5.21111  0.85944 

$cov
          SI        AL         FE        MG        CA         TI
SI 13.063824  1.451863 -0.0129412  1.349706 -1.143922  0.0559902
AL  1.451863  2.561732 -0.4000000 -1.586569  0.132288 -0.0129379
FE -0.012941 -0.400000  0.1764706  0.338824 -0.222941  0.0090588
MG  1.349706 -1.586569  0.3388235  1.774412 -0.100196  0.0180686
CA -1.143922  0.132288 -0.2229412 -0.100196  0.782222 -0.0219935
TI  0.055990 -0.012938  0.0090588  0.018069 -0.021993  0.0011114

$msg
[1] "0 singular samples of size 7 out of 3000"

$crit
[1] -10.587

$best
 [1]  1  2  4  5  6  9 10 11 13 14 15 19 20 21 22 26 27

$n.obs
[1] 27

$quan
[1] 17

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                rice 105   6  56   -14.463986 
Best subsample: 
 [1]   2   4   6   8  10  12  15  18  21  22  24  29  30  31  32  33  34  36  37
[20]  38  41  44  45  47  51  52  53  54  55  59  61  65  67  68  69  70  72  76
[39]  78  79  80  81  82  83  84  85  86  92  93  94  95  97  98  99 102 105
Outliers:  0 
------------- *MCD() result: --------------------------
$center
             Favor         Appearance              Taste         Stickiness 
         -0.261143           0.091901          -0.131516           0.074637 
         Toughness Overall_evaluation 
          0.068473          -0.209516 

$cov
                      Favor Appearance    Taste Stickiness Toughness
Favor               0.37972    0.32416  0.37997    0.37180  -0.18998
Appearance          0.32416    0.54625  0.51414    0.51737  -0.29632
Taste               0.37997    0.51414  0.62865    0.62208  -0.35794
Stickiness          0.37180    0.51737  0.62208    0.79643  -0.46309
Toughness          -0.18998   -0.29632 -0.35794   -0.46309   0.42723
Overall_evaluation  0.45786    0.59799  0.71700    0.77311  -0.44109
                   Overall_evaluation
Favor                         0.45786
Appearance                    0.59799
Taste                         0.71700
Stickiness                    0.77311
Toughness                    -0.44109
Overall_evaluation            0.88794

$msg
[1] "0 singular samples of size 7 out of 3000"

$crit
[1] -14.464

$best
 [1]   2   4   6   8  10  12  15  18  21  22  24  29  30  31  32  33  34  36  37
[20]  38  41  44  45  47  51  52  53  54  55  59  61  65  67  68  69  70  72  76
[39]  78  79  80  81  82  83  84  85  86  92  93  94  95  97  98  99 102 105

$n.obs
[1] 105

$quan
[1] 56

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
                un86  73   7  40    16.891076 
Best subsample: 
 [1]  9 10 12 14 16 17 18 20 23 24 26 27 31 32 33 37 39 41 42 45 47 48 49 50 51
[26] 52 55 56 57 60 61 62 63 64 65 67 70 71 72 73
Outliers:  0 
------------- *MCD() result: --------------------------
$center
     POP      MOR      CAR       DR      GNP      DEN       TB 
22.52457 68.52174  7.12370  0.90130  1.24739 59.68239  0.44217 

$cov
          POP        MOR        CAR         DR         GNP       DEN         TB
POP 770.25647  229.95690  -14.63580  -2.645204  -6.6936678   18.7093  0.6785543
MOR 229.95690 2101.32174 -275.88086 -31.396696 -36.6697198 -653.4731 -0.8918261
CAR -14.63580 -275.88086   65.63702   6.005357   9.2014676   90.1669  0.2285518
DR   -2.64520  -31.39670    6.00536   0.849207   0.7307013   17.1491  0.0130815
GNP  -6.69367  -36.66972    9.20147   0.730701   2.0202730   14.0366  0.0030325
DEN  18.70930 -653.47305   90.16686  17.149066  14.0366419 2208.4689 -1.1267831
TB    0.67855   -0.89183    0.22855   0.013082   0.0030325   -1.1268  0.0158174

$msg
[1] "0 singular samples of size 8 out of 3000"

$crit
[1] 16.891

$best
 [1]  9 10 12 14 16 17 18 20 23 24 26 27 31 32 33 37 39 41 42 45 47 48 49 50 51
[26] 52 55 56 57 60 61 62 63 64 65 67 70 71 72 73

$n.obs
[1] 73

$quan
[1] 40

--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
               wages  36   9  23    25.139287 
Best subsample: 
 [1]  1  2  3  6  7  8 10 11 14 17 20 21 22 23 25 26 27 29 31 33 34 35 36
Outliers:  0 
------------- *MCD() result: --------------------------
$center
      HRS      RATE      ERSP      ERNO      NEIN     ASSET       AGE       DEP 
2144.5652    2.8484 1115.4348  303.0870  340.9565 6491.8261   39.4000    2.4663 
   SCHOOL 
  10.0913 

$cov
               HRS       RATE        ERSP        ERNO        NEIN      ASSET
HRS     3.1775e+03  12.703652 -3.0743e+03   -675.5968   5390.0711  121911.56
RATE    1.2704e+01   0.136870  4.0405e+00     -1.8722     34.5884     805.56
ERSP   -3.0743e+03   4.040484  1.0453e+04    165.3696  -3044.3439  -58968.01
ERNO   -6.7560e+02  -1.872176  1.6537e+02   1062.9921   -840.3142  -20437.21
NEIN    5.3901e+03  34.588383 -3.0443e+03   -840.3142  12176.3162  273686.95
ASSET   1.2191e+05 805.557943 -5.8968e+04 -20437.2115 273686.9466 6197644.24
AGE    -3.9518e+01  -0.177027  3.3995e+01      8.4773    -61.5682   -1451.17
DEP    -5.6454e-01  -0.035799 -1.1652e+01      1.6422     -8.4696    -184.88
SCHOOL  3.9405e+01   0.325095  9.9032e-01     -7.9219     90.6542    2110.15
               AGE         DEP      SCHOOL
HRS    -3.9518e+01   -0.564543   39.405138
RATE   -1.7703e-01   -0.035799    0.325095
ERSP    3.3995e+01  -11.651729    0.990316
ERNO    8.4773e+00    1.642154   -7.921937
NEIN   -6.1568e+01   -8.469623   90.654150
ASSET  -1.4512e+03 -184.879808 2110.152964
AGE     7.4818e-01   -0.042855   -0.569545
DEP    -4.2855e-02    0.051342   -0.073393
SCHOOL -5.6955e-01   -0.073393    0.840830

$msg
[1] "0 singular samples of size 10 out of 3000"

$crit
[1] 25.139

$best
 [1]  1  2  3  6  7  8 10 11 14 17 20 21 22 23 25 26 27 29 31 33 34 35 36

$n.obs
[1] 36

$quan
[1] 23

--------------------------------------------------------
========================================================
> 
> ###--- now the "close to singular" mahalanobis case:
> set.seed(6)
> (c3  <- covMcd(mort3))
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=34); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = mort3)
Log(Det.):  37.5 

Robust Estimate of Location:
  MO70    MAGE    CI68    MDOC    DENS    NONW    EDUC    IN69  
113.06  287.91  164.84  155.76   19.56    2.23  558.23  106.91  
Robust Estimate of Covariance:
        MO70       MAGE     CI68     MDOC     DENS      NONW    EDUC     IN69
MO70   540.1   497.3190    62.46   107.37   -20.17   10.6107  -766.8  -107.88
MAGE   497.3   747.7620     4.57   222.17   -75.53   -0.0169  -443.7     3.43
CI68    62.5     4.5663   588.93  -253.26   -65.58    5.1532  -659.0    19.76
MDOC   107.4   222.1690  -253.26  1629.27   -28.72    1.9300   296.0   100.86
DENS   -20.2   -75.5255   -65.58   -28.72   124.97    8.2075  -325.0   -42.70
NONW    10.6    -0.0169     5.15     1.93     8.21    2.1620   -85.5    -7.87
EDUC  -766.8  -443.7455  -659.00   295.96  -324.95  -85.4782  5850.0   446.59
IN69  -107.9     3.4259    19.76   100.86   -42.70   -7.8714   446.6   111.20
> (c3. <- covMcd(mort3, nsamp="deterministic"))
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=34)
Call:
covMcd(x = mort3, nsamp = "deterministic")
iBest: 2; C-step iterations: 3, 3, 3, 2, 2, 3
Log(Det.):  38 

Robust Estimate of Location:
  MO70    MAGE    CI68    MDOC    DENS    NONW    EDUC    IN69  
111.41  286.52  164.44  155.62   19.50    2.24  556.46  107.68  
Robust Estimate of Covariance:
         MO70      MAGE     CI68     MDOC     DENS     NONW  EDUC     IN69
MO70   599.72   511.165    84.86   128.44    -5.08   14.133  -643  -113.52
MAGE   511.16   736.618    12.89   184.81   -78.70    0.249  -353    12.26
CI68    84.86    12.891   630.10  -235.70   -58.52    4.483  -657    37.68
MDOC   128.44   184.814  -235.70  1520.48    11.12    6.648   287    61.60
DENS    -5.08   -78.700   -58.52    11.12   134.09    9.919  -282   -50.87
NONW    14.13     0.249     4.48     6.65     9.92    2.407   -75    -8.91
EDUC  -643.45  -352.533  -657.02   286.66  -282.25  -75.004  5333   375.55
IN69  -113.52    12.257    37.68    61.60   -50.87   -8.912   376   136.08
> stopifnot(log(c3$crit) <= log(c3.$crit),
+           print(log(c3.$crit / c3$crit)) <= 0.8)
[1] 0.013676
> ## see 0.516 / 0.291 {with seed 7}
> ##
> ## rescale variables:
> scaleV <- c(0.1, 0.1, 1, 1, .001, 0.1, 0.1, 100)
> mm <- data.matrix(mort3) * rep(scaleV, each = nrow(mort3))
> C3  <- covMcd(mm)
> C3. <- covMcd(mm, nsamp="deterministic")
> stopifnot(C3$mcd.wt == c3$mcd.wt)# here, not for all seeds!
> 
> ## error ("computationally singular") with old (too high) default tolerance:
> try( covMcd(mm, control= rrcov.control(tol = 1e-10)) )
Error in solve.default(cov, ...) : 
  system is computationally singular: reciprocal condition number = 2.4435e-11
> try( covMcd(mm, control= rrcov.control(tol = 1e-10), nsamp="deterministic") )
Error in solve.default(cov, ...) : 
  system is computationally singular: reciprocal condition number = 2.71945e-11
> 
> showProc.time()
Time (user system elapsed): 3.14 0.41 3.59 
> 
> ## "large" examples using different algo branches {seg.fault in version 0.4-4}:
> 
> n <- 600 ## - partitioning will be triggered
> set.seed(1)
> X <- matrix(round(100*rnorm(n * 3)), n, 3)
> (cX  <- covMcd(X))
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=302); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = X)
Log(Det.):  25.1 

Robust Estimate of Location:
[1]   0.141  -6.083  -0.703
Robust Estimate of Covariance:
      [,1]   [,2]   [,3]
[1,]  9321   -111    376
[2,]  -111  10842    242
[3,]   376    242  11330
>  cX. <- covMcd(X, nsamp="deterministic", scalefn = scaleTau2)
> i <- names(cX); i <- i[!(i %in% c("call", "nsamp", "method", "raw.weights"))]
> stopifnot(sum(cX.$raw.weights != cX$raw.weights) <= 2,
+           all.equal(cX[i], cX.[i], tol= 1/9))
> 
> n <- 2000 ## - nesting will be triggered
> set.seed(4)
> X <- matrix(round(100*rnorm(n * 3)), n, 3)
> set.seed(1)
> summary(cX  <- covMcd(X)) # <- show newly activated  print.summary.mcd(.)
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=1002); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = X)
Log(Det.):  24.9 

Robust Estimate of Location:
[1]   0.422  -0.422  -0.252
Robust Estimate of Covariance:
        [,1]    [,2]   [,3]
[1,]  9861.1   -60.6     74
[2,]   -60.6  9472.4   -273
[3,]    74.0  -273.0  10034

Eigenvalues:
[1] 10172  9836  9360

Robust Distances: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.0171  1.1700  2.4300  3.0100  4.1400 15.8000 
Robustness weights: 
 52 observations c(118,122,130,152,155,159,181,246,266,376,394,432,483,517,608,666,730,774,792,840,913,971,986,1067,1095,1099,1106,1129,1167,1179,1222,1261,1276,1293,1412,1443,1499,1534,1570,1573,1589,1596,1622,1633,1712,1714,1726,1784,1795,1805,1845,1891)
	 are outliers with |weight| = 0 ( < 5e-05); 
 1948 weights are ~= 1.
>  cX. <- covMcd(X, nsamp="deterministic", scalefn = scaleTau2)
> i2 <- i[i != "mcd.wt"]
> stopifnot(print(sum(cX.$raw.weights != cX$raw.weights)) <= 3, # 2
+           all.equal(cX[i2], cX.[i2], tol= 1/10))# 1/16
[1] 2
> 
> set.seed(1) ## testing of 'raw.only' :
> cXo <- covMcd(X, raw.only=TRUE)
> i <- paste0("raw.", c("cov", "center", "cnp2"))
> stopifnot(cXo$raw.only, all.equal(cX[i], cXo[i], tol = 1e-15),
+           c("best", "mah") %in% setdiff(names(cX), names(cXo)))
> showProc.time()
Time (user system elapsed): 0.33 0.02 0.35 
> 
> ## Now, some small sample cases:
> 
> ## maximal values:
> n. <- 10
> p. <-  8
> set.seed(44)
> (X. <- cbind(1:n., round(10*rt(n.,3)), round(10*rt(n.,2)),
+              matrix(round(10*rnorm(n. * (p.-3)), 1),  nrow = n., ncol = p.-3)))
      [,1] [,2] [,3]  [,4]  [,5]  [,6] [,7]  [,8]
 [1,]    1    8    0  -3.6   4.7   3.0 -7.7  -3.3
 [2,]    2  -24    3   5.7 -15.6  13.5 -8.9 -10.0
 [3,]    3   -1    0  17.0  -1.9  19.0 17.4  -5.8
 [4,]    4   -9    2   0.1  -6.0 -11.5 18.6  25.8
 [5,]    5   -6  -31   2.4  10.0   9.6  5.4  -4.8
 [6,]    6    6   -3 -12.3  -4.6  17.2 -4.6  15.2
 [7,]    7   22   16  -2.8  -2.2  -5.2 -2.2   5.6
 [8,]    8   23    5  -9.0 -10.4  -2.6 -5.7   2.0
 [9,]    9    1   -9   2.1  -5.6   4.1  2.8  -3.0
[10,]   10  -17   -2  -8.8  -7.8   6.5  4.2  17.7
> 
> ## 2 x 1 ---> Error
> r <- tryCatch(covMcd(X.[1:2, 2, drop=FALSE]), error=function(e)e)
> stopifnot(inherits(r, "error"),
+           grepl("too small sample size", r$message))
> 
> ## 3 x 2 --- ditto
> r <- tryCatch(covMcd(X.[1:3, 2:3]), error=function(e)e)
> stopifnot(inherits(r, "error"),
+           grepl("too small sample size", r$message))
> 
> ## 5 x 3  [ n < 2 p  ! ]  --- also works for MASS
> X <- X.[1:5, 1:3]
> set.seed(101)
> ## the finite-sample correction is definitely doubtful:
> summary(cc <- covMcd(X, use.correction = FALSE))
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=4); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = X, use.correction = FALSE)
Log(Det.):  4.3 

Robust Estimate of Location:
[1]   2.50  -6.50   1.25
Robust Estimate of Covariance:
        [,1]    [,2]     [,3]
[1,]   1.797   -5.03    0.539
[2,]  -5.033  198.80  -20.671
[3,]   0.539  -20.67    2.427

Eigenvalues:
[1] 201.080   1.669   0.274

Robust Distances: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    2.1     2.1     2.1   752.0     2.1  3750.0 
Robustness weights: 
[1] 1 1 1 1 0
Warning message:
In covMcd(X, use.correction = FALSE) :
  n < 2 * p, i.e., possibly too small sample size
> str(cc) ## best = 2 3 4 5
List of 19
 $ call       : language covMcd(x = X, use.correction = FALSE)
 $ nsamp      : num 500
 $ method     : chr "Fast MCD(alpha=0.5 ==> h=4); nsamp = 500; (n,k)mini = (300,5)"
 $ cov        : num [1:3, 1:3] 1.797 -5.033 0.539 -5.033 198.8 ...
 $ center     : num [1:3] 2.5 -6.5 1.25
 $ n.obs      : int 5
 $ best       : int [1:4] 1 2 3 4
 $ alpha      : num 0.5
 $ quan       : num 4
 $ raw.cov    : num [1:3, 1:3] 2.474 -6.928 0.742 -6.928 273.675 ...
 $ raw.center : num [1:3] 2.5 -6.5 1.25
 $ raw.weights: num [1:5] 1 1 1 1 0
 $ crit       : num 4.3
 $ raw.mah    : num [1:5] 1.52 1.52 1.52 1.52 2724.44
 $ mah        : num [1:5] 2.09 2.09 2.09 2.09 3750.56
 $ mcd.wt     : num [1:5] 1 1 1 1 0
 $ X          : num [1:5, 1:3] 1 2 3 4 5 8 -24 -1 -9 -6 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:5] "1" "2" "3" "4" ...
  .. ..$ : NULL
 $ raw.cnp2   : num [1:2] 1.48 1
 $ cnp2       : num [1:2] 1.08 1
 - attr(*, "class")= chr "mcd"
> if(hasMASS <- requireNamespace("MASS", quietly=TRUE)) {
+ mcc <- MASS::cov.mcd(X)
+ stopifnot(cc$best == mcc$best,
+           all.equal(cc$center, mcc$center, tolerance = 1e-10),
+           all.equal(c(mcc$cov / cc$raw.cov), rep(0.673549282206, 3*3)))
+ }
> ## p = 4 -- 6 x 4 & 7 x 4  [ n < 2 p  ! ]
> p <- 4
> n <- 7
> X <- X.[1:n, 1+(1:p)]
> stopifnot(dim(X) == c(n,p))
> (cc <- covMcd(X, use.correction = FALSE))
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=6); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = X, use.correction = FALSE)
Log(Det.):  15.6 

Robust Estimate of Location:
[1]   0.333   3.000   0.683  -4.267
Robust Estimate of Covariance:
       [,1]    [,2]     [,3]     [,4]
[1,]  264.3  50.669  -68.183   85.250
[2,]   50.7  47.688   -0.617   -0.724
[3,]  -68.2  -0.617  104.485  -12.456
[4,]   85.2  -0.724  -12.456   47.227
Warning message:
In covMcd(X, use.correction = FALSE) :
  n < 2 * p, i.e., possibly too small sample size
> str(cc) ## best = 1 2 4 5 6 7
List of 19
 $ call       : language covMcd(x = X, use.correction = FALSE)
 $ nsamp      : num 500
 $ method     : chr "Fast MCD(alpha=0.5 ==> h=6); nsamp = 500; (n,k)mini = (300,5)"
 $ cov        : num [1:4, 1:4] 264.3 50.7 -68.2 85.2 50.7 ...
 $ center     : num [1:4] 0.333 3 0.683 -4.267
 $ n.obs      : int 7
 $ best       : int [1:6] 1 2 3 4 6 7
 $ alpha      : num 0.5
 $ quan       : num 6
 $ raw.cov    : num [1:4, 1:4] 319 61.2 -82.3 102.9 61.2 ...
 $ raw.center : num [1:4] 0.333 3 0.683 -4.267
 $ raw.weights: num [1:7] 1 1 1 1 0 1 1
 $ crit       : num 15.6
 $ raw.mah    : num [1:7] 2.546 2.477 3.224 0.835 24.765 ...
 $ mah        : num [1:7] 3.07 2.99 3.89 1.01 29.89 ...
 $ mcd.wt     : num [1:7] 1 1 1 1 0 1 1
 $ X          : num [1:7, 1:4] 8 -24 -1 -9 -6 6 22 0 3 0 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:7] "1" "2" "3" "4" ...
  .. ..$ : NULL
 $ raw.cnp2   : num [1:2] 1.28 1
 $ cnp2       : num [1:2] 1.06 1
 - attr(*, "class")= chr "mcd"
> if(hasMASS) {
+ mcc <- MASS::cov.mcd(X)
+ stopifnot(cc$best == mcc$best,
+           all.equal(cc$center, mcc$center, tolerance = 1e-10),
+           all.equal(c(mcc$cov / cc$raw.cov), rep(0.7782486992881, p*p)))
+ }
> 
> n <- 6
> X <- X[1:n,]
> (cc <- covMcd(X, use.correction = FALSE))
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=5); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = X, use.correction = FALSE)
Log(Det.):  7.67 

Robust Estimate of Location:
[1]  -4.00   0.40   1.38  -4.68
Robust Estimate of Covariance:
       [,1]    [,2]   [,3]    [,4]
[1,]  180.4  -26.61  -61.1   92.26
[2,]  -26.6    5.64   13.7   -9.48
[3,]  -61.1   13.69  126.7  -13.27
[4,]   92.3   -9.48  -13.3   57.67
Warning message:
In covMcd(X, use.correction = FALSE) :
  n < 2 * p, i.e., possibly too small sample size
> if(hasMASS) {
+ mcc <- MASS::cov.mcd(X)
+ stopifnot(cc$best == mcc$best,
+           all.equal(cc$center, mcc$center, tolerance = 1e-10),
+           all.equal(c(mcc$cov / cc$raw.cov), rep(0.7528695976179, p*p)))
+ }
> 
> showProc.time()
Time (user system elapsed): 0.03 0 0.03 
> 
> ## nsamp = "exact" -- here for p=7
> coleman.x <- data.matrix(coleman[, 1:6])
> showSys.time(CcX <- covMcd(coleman.x, nsamp= "exact"))
Time    user  system elapsed 
Time    0.70    0.00    0.71 
> showSys.time(Ccd <- covMcd(coleman.x, nsamp= "deterministic"))
Time    user  system elapsed 
Time    0.02    0.00    0.01 
> stopifnot(all.equal(CcX$best,
+ 		    c(2, 5:9, 11,13, 14:16, 19:20), tolerance=0),
+ 	  intersect(CcX$best, Ccd$best) == c(2,5,7,8,13,14,16,19,20),
+           relErr(CcX$crit, Ccd$crit) < 0.35 # see ~ 0.34
+ )
> summary(Ccd)
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Deterministic MCD(alpha=0.5 ==> h=13)
Call:
covMcd(x = coleman.x, nsamp = "deterministic")
iBest: 1; C-step iterations: 3, 2, 2, 2, 2, 2
Log(Det.):  1.85 

Robust Estimate of Location:
  salaryP   fatherWc    sstatus  teacherSc  motherLev          Y  
     2.76      48.38       6.12      25.00       6.40      36.53  
Robust Estimate of Covariance:
           salaryP  fatherWc  sstatus  teacherSc  motherLev        Y
salaryP     0.3367      2.37   -0.354      0.201     0.0997   -0.863
fatherWc    2.3742   1732.58  439.328     16.754    45.8650  254.718
sstatus    -0.3541    439.33  159.367      5.095    13.4665   90.241
teacherSc   0.2013     16.75    5.095      1.044     0.7381    2.075
motherLev   0.0997     45.86   13.466      0.738     1.3859    7.403
Y          -0.8630    254.72   90.241      2.075     7.4030   57.565

Eigenvalues:
[1] 1.89e+03 5.81e+01 5.10e+00 8.07e-01 2.16e-01 1.93e-02

Robust Distances: 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  0.859   1.920   2.850  15.100  21.500  71.900 
Robustness weights: 
 7 observations c(1,6,9,10,11,15,18) are outliers with |weight| = 0 ( < 0.005); 
 13 weights are ~= 1.
> 
> 
> demo(determinMCD)## ../demo/determinMCD.R


	demo(determinMCD)
	---- ~~~~~~~~~~~

> library(robustbase)

> source(system.file("xtraR/test_MCD.R", package = "robustbase"))#-> doMCDdata()

> ##' This version of domcd() runs *both* "Fast" and "deterministic" MCD
> ##' @title covMcd() "workhorse" function -- *passed* to and from  doMCDdata()
> ##' @param x data set: n x p numeric matrix
> ##' @param xname "promise" which will be substituted() and printed
> ##' @param nrep number of repetition: only sensible for *timing*
> ##' @param time
> ##' @param short
> ##' @param full
> ##' @param lname optional:
> ##' @param seed  optional:
> ##' @param trace optional:
> domcd.2 <- function(x, xname, nrep=1,
+                     do.exact = NULL, # <- smart default, globally customizable
+                     time   = get("time",   parent.frame()), # compromise
+                     short  = get("short",  parent.frame()), # compromise
+                     full   = get("full",   parent.frame()), # compromise
+                     lname=20, seed=123, trace=FALSE)
+ {
+     if(short && full)
+ 	stop("you should not set both 'full' and 'short' to TRUE")
+     force(xname)# => evaluate when it is a data(<>, ..) call
+     n <- dim(x)[1]
+     p <- dim(x)[2]
+     metha <- "FastMCD"
+     methb <- "detMCD"
+     if(is.null(do.exact)) {
+         nLarge <- if(exists("nLarge", mode="numeric"))
+                       get("nLarge", mode="numeric") else 5000
+         do.exact <- choose(n, p+1L) < nLarge
+     }
+     set.seed(seed); mcda <- covMcd(x, trace=trace)
+     set.seed(seed); mcdb <- covMcd(x, nsamp="deterministic", trace=trace)
+     if(do.exact) {
+ 	methX <- "exactMCD"
+         set.seed(seed); mcdX <- covMcd(x, nsamp="exact", trace=trace)
+     }
+     mkRes <- function(mcd)
+ 	sprintf("%3d %3d %3d %12.6f\n", n,p, mcd$quan, mcd$crit)
+     xresa <- mkRes(mcda)
+     xresb <- mkRes(mcdb)
+     if(do.exact) xresX <- mkRes(mcdX)
+     if(time) {
+         tim1 <- function(meth)
+             sprintf("%10.3f\n", system.time(repMCD(x, nrep, meth))[1]/nrep)
+         xresa <- paste(xresa, tim1(metha))
+         xresb <- paste(xresb, tim1(methb))
+         if(do.exact) xresX <- paste(xresX, tim1(methX))
+     }
+     if(full) {
+ 	header <- get("header", parent.frame())
+ 	header(time)
+     }
+     ## lname: must fit to header():
+     x.meth <- paste(xname, format(c(metha, methb, if(do.exact) methX)))
+     cat(sprintf("%*s", lname, x.meth[1]), xresa)
+     cat(sprintf("%*s", lname, x.meth[2]), xresb)
+     if(do.exact) cat(sprintf("%*s", lname, x.meth[3]), xresX)
+     cat("Best subsamples: \n")
+     cat(sprintf(" %10s: ", metha)); print(mcda$best)
+     if(identical(mcdb$best, mcda$best))
+ 	cat(sprintf(" %s is the same as %s\n", methb, metha))
+     else {
+ 	cat(sprintf(" %10s: ", methb)); print(mcdb$best)
+ 	cat(sprintf(" Difference  %s - %s:", methb, metha))
+ 	print(setdiff(mcdb$best, mcda$best))
+     }
+     if(do.exact) {
+ 	if(identical(mcda$best, mcdX$best))
+ 	    cat(sprintf(" %s is the same as %s\n", methX, metha))
+ 	else if(identical(mcdb$best, mcdX$best))
+ 	    cat(sprintf(" %s is the same as %s\n", methX, methb))
+ 	else {
+ 	    cat(sprintf(" %10s: ", methX)); print(mcdX$best)
+         }
+     }
+     if(!short) {
+         cat("Details about", metha,": ")
+         ibad <- which(mcda$wt==0)
+         names(ibad) <- NULL
+         nbad <- length(ibad)
+         cat("Outliers: ",nbad,"\n")
+         if(nbad > 0)
+             print(ibad)
+         if(full){
+             cat("-------------\n")
+             print(mcda)
+         }
+         cat("--------------------------------------------------------\n")
+     }
+ }

> doMCDdata(domcd = domcd.2)

Call:  doMCDdata(domcd = domcd.2) 
Data Set               n   p  h(alf) LOG(obj)
=============================================
    bushfire FastMCD  38   5  22    18.135810
    bushfire detMCD   38   5  22    18.135810
Best subsamples: 
    FastMCD:  [1]  1  2  3  4  5  6 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 detMCD is the same as FastMCD
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=22); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  18.1 

Robust Estimate of Location:
 V1   V2   V3   V4   V5  
105  147  274  218  279  
Robust Estimate of Covariance:
       V1     V2     V3    V4    V5
V1    346    268  -1692  -381  -311
V2    268    236  -1125  -230  -194
V3  -1692  -1125   9993  2455  1951
V4   -381   -230   2455   647   505
V5   -311   -194   1951   505   398
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
      heart FastMCD   12   2   7     5.678742
      heart detMCD    12   2   7     5.678742
      heart exactMCD  12   2   7     5.678742
Best subsamples: 
    FastMCD: [1]  1  3  4  5  7  9 11
 detMCD is the same as FastMCD
 exactMCD is the same as FastMCD
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=7); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  5.68 

Robust Estimate of Location:
height  weight  
  38.3    33.1  
Robust Estimate of Covariance:
        height  weight
height     135     259
weight     259     564
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
    starsCYG FastMCD  47   2  25    -8.031215
    starsCYG detMCD   47   2  25    -8.028718
Best subsamples: 
    FastMCD:  [1]  1  2  4  6  8 10 12 13 16 24 25 26 28 32 33 37 38 39 40 41 42 43 44 45 46
     detMCD:  [1]  1  6 10 12 13 16 23 24 25 26 28 31 32 33 37 38 39 40 41 42 43 44 45 46 47
 Difference  detMCD - FastMCD:[1] 23 31 47
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=25); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  -8.03 

Robust Estimate of Location:
   log.Te  log.light  
     4.41       4.95  
Robust Estimate of Covariance:
           log.Te  log.light
log.Te     0.0132     0.0394
log.light  0.0394     0.2743
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
   stackloss FastMCD  21   3  12     5.472581
   stackloss detMCD   21   3  12     6.577286
Best subsamples: 
    FastMCD:  [1]  4  5  6  7  8  9 10 11 12 13 14 20
     detMCD:  [1]  4  5  6  7  8  9 11 13 16 18 19 20
 Difference  detMCD - FastMCD:[1] 16 18 19
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=12); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  5.47 

Robust Estimate of Location:
  Air.Flow  Water.Temp  Acid.Conc.  
      59.5        20.8        87.3  
Robust Estimate of Covariance:
            Air.Flow  Water.Temp  Acid.Conc.
Air.Flow        6.29        5.85        5.74
Water.Temp      5.85        9.23        6.14
Acid.Conc.      5.74        6.14       23.25
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
   phosphor FastMCD   18   2  10     6.878847
   phosphor detMCD    18   2  10     7.732906
   phosphor exactMCD  18   2  10     6.878847
Best subsamples: 
    FastMCD:  [1]  3  5  8  9 11 12 13 14 15 17
     detMCD:  [1]  2  4  5  7  8  9 11 12 14 16
 Difference  detMCD - FastMCD:[1]  2  4  7 16
 exactMCD is the same as FastMCD
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=10); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  6.88 

Robust Estimate of Location:
  inorg  organic  
   13.4     38.8  
Robust Estimate of Covariance:
         inorg  organic
inorg      129      130
organic    130      182
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
     coleman FastMCD  20   5  13     1.286808
     coleman detMCD   20   5  13     2.149184
Best subsamples: 
    FastMCD:  [1]  2  3  4  5  7  8 12 13 14 16 17 19 20
     detMCD:  [1]  3  4  5  7  8 12 13 14 16 17 18 19 20
 Difference  detMCD - FastMCD:[1] 18
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=13); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  1.29 

Robust Estimate of Location:
  salaryP   fatherWc    sstatus  teacherSc  motherLev  
     2.76      48.38       6.12      25.00       6.40  
Robust Estimate of Covariance:
           salaryP  fatherWc  sstatus  teacherSc  motherLev
salaryP      0.253      1.79   -0.266      0.151      0.075
fatherWc     1.786   1303.38  330.496     12.604     34.503
sstatus     -0.266    330.50  119.888      3.833     10.131
teacherSc    0.151     12.60    3.833      0.785      0.555
motherLev    0.075     34.50   10.131      0.555      1.043
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
    salinity FastMCD  28   3  16     1.326364
    salinity detMCD   28   3  16     1.940763
Best subsamples: 
    FastMCD:  [1]  1  2  6  7  8 12 13 14 18 20 21 22 25 26 27 28
     detMCD:  [1]  1  8 10 12 13 14 15 17 18 20 21 22 25 26 27 28
 Difference  detMCD - FastMCD:[1] 10 15 17
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=16); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  1.33 

Robust Estimate of Location:
   X1     X2     X3  
10.08   2.78  22.78  
Robust Estimate of Covariance:
       X1     X2     X3
X1  10.44   1.01  -3.19
X2   1.01   3.83  -1.44
X3  -3.19  -1.44   2.39
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
        wood FastMCD  20   5  13   -36.270094
        wood detMCD   20   5  13   -35.240819
Best subsamples: 
    FastMCD:  [1]  1  2  3  5  9 10 12 13 14 15 17 18 20
     detMCD:  [1]  1  2  3  5  9 11 12 13 14 15 17 18 20
 Difference  detMCD - FastMCD:[1] 11
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=13); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  -36.3 

Robust Estimate of Location:
   x1     x2     x3     x4     x5  
0.587  0.122  0.531  0.538  0.892  
Robust Estimate of Covariance:
           x1         x2         x3         x4         x5
x1   0.010025   1.88e-03   0.003153  -0.000586  -1.63e-03
x2   0.001881   4.85e-04   0.001269  -0.000052   2.36e-05
x3   0.003153   1.27e-03   0.006632  -0.000871   3.52e-04
x4  -0.000586  -5.20e-05  -0.000871   0.002846   1.83e-03
x5  -0.001630   2.36e-05   0.000352   0.001828   2.77e-03
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
         hbk FastMCD  75   3  39    -1.047858
         hbk detMCD   75   3  39    -1.045501
Best subsamples: 
    FastMCD:  [1] 15 16 17 18 19 20 21 22 23 24 26 27 31 32 33 35 36 37 38 40 43 49 50 51 54
[26] 55 56 58 59 61 63 64 66 67 70 71 72 73 74
     detMCD:  [1] 15 17 18 19 20 21 22 23 24 26 27 28 29 32 33 35 36 38 40 41 43 48 49 50 51
[26] 54 55 56 58 59 63 64 66 67 70 71 72 73 74
 Difference  detMCD - FastMCD:[1] 28 29 41 48
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=39); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  -1.05 

Robust Estimate of Location:
  X1    X2    X3  
1.54  1.78  1.69  
Robust Estimate of Covariance:
       X1     X2     X3
X1  1.227  0.055  0.127
X2  0.055  1.249  0.153
X3  0.127  0.153  1.160
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
    Animals FastMCD   28   2  15    14.555543
    Animals detMCD    28   2  15    14.555543
    Animals exactMCD  28   2  15    14.555543
Best subsamples: 
    FastMCD:  [1]  1  3  4  5 10 11 17 18 19 20 21 22 23 26 27
 detMCD is the same as FastMCD
 exactMCD is the same as FastMCD
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=15); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  14.6 

Robust Estimate of Location:
 body  brain  
 18.7   64.9  
Robust Estimate of Covariance:
       body  brain
body    929   1576
brain  1576   5646
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
        milk FastMCD  86   8  47   -28.931843
        milk detMCD   86   8  47   -28.844954
Best subsamples: 
    FastMCD:  [1]  5  7  8  9 10 22 23 24 26 30 31 32 33 34 35 37 38 39 45 46 49 51 53 54 55
[26] 56 57 58 59 60 61 63 64 65 66 67 68 69 71 72 76 78 79 81 83 84 86
     detMCD:  [1]  5  8  9 10 21 22 23 24 26 30 31 32 33 34 35 36 37 38 39 46 51 53 54 55 56
[26] 57 58 59 60 61 62 63 64 65 66 67 68 69 71 72 76 78 79 81 83 84 86
 Difference  detMCD - FastMCD:[1] 21 36 62
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=47); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  -28.9 

Robust Estimate of Location:
    X1      X2      X3      X4      X5      X6      X7      X8  
  1.03   35.76   33.05   26.12   25.10   25.04  122.94   14.36  
Robust Estimate of Covariance:
          X1        X2       X3        X4        X5        X6        X7
X1  4.68e-07  8.92e-05  0.00018  0.000172  0.000152  0.000143  0.000625
X2  8.92e-05  1.56e+00  0.21893  0.161497  0.101095  0.197334  1.278580
X3  1.80e-04  2.19e-01  1.17765  0.868701  0.855642  0.864872  0.690044
X4  1.72e-04  1.61e-01  0.86870  0.688578  0.659177  0.660833  0.565031
X5  1.52e-04  1.01e-01  0.85564  0.659177  0.692458  0.667944  0.570607
X6  1.43e-04  1.97e-01  0.86487  0.660833  0.667944  0.693997  0.572373
X7  6.25e-04  1.28e+00  0.69004  0.565031  0.570607  0.572373  3.468208
X8  3.52e-06  1.15e-01  0.17236  0.114700  0.097445  0.107939  0.211966
          X8
X1  3.52e-06
X2  1.15e-01
X3  1.72e-01
X4  1.15e-01
X5  9.74e-02
X6  1.08e-01
X7  2.12e-01
X8  1.16e-01
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
     lactic FastMCD   20   2  11     0.359580
     lactic detMCD    20   2  11     0.359580
     lactic exactMCD  20   2  11     0.359580
Best subsamples: 
    FastMCD:  [1]  1  2  3  4  5  7  8  9 10 11 12
 detMCD is the same as FastMCD
 exactMCD is the same as FastMCD
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=11); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  0.36 

Robust Estimate of Location:
   X     Y  
3.86  5.01  
Robust Estimate of Covariance:
      X     Y
X  10.6  14.6
Y  14.6  21.3
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
    pension FastMCD   18   2  10    16.675508
    pension detMCD    18   2  10    16.675508
    pension exactMCD  18   2  10    16.675508
Best subsamples: 
    FastMCD:  [1]  1  2  3  4  5  6  8  9 11 12
 detMCD is the same as FastMCD
 exactMCD is the same as FastMCD
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=10); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  16.7 

Robust Estimate of Location:
  Income  Reserves  
    52.3     560.9  
Robust Estimate of Covariance:
          Income  Reserves
Income      1420     11932
Reserves   11932    208643
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
      pilot FastMCD   20   2  11     6.487287
      pilot detMCD    20   2  11     7.023173
      pilot exactMCD  20   2  11     6.487287
Best subsamples: 
    FastMCD:  [1]  2  3  6  7  9 12 15 16 17 18 20
     detMCD:  [1]  1  2  3  4  8 11 12 13 14 15 19
 Difference  detMCD - FastMCD:[1]  1  4  8 11 13 14 19
 exactMCD is the same as FastMCD
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=11); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  6.49 

Robust Estimate of Location:
    X      Y  
101.1   67.7  
Robust Estimate of Covariance:
      X     Y
X  3344  1070
Y  1070   343
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
        vaso FastMCD  39   2  21    -3.972244
        vaso detMCD   39   2  21    -3.972244
Best subsamples: 
    FastMCD:  [1]  3  4  8 14 18 19 20 21 22 23 24 25 26 27 28 33 34 35 37 38 39
 detMCD is the same as FastMCD
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=21); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  -3.97 

Robust Estimate of Location:
Volume    Rate  
  1.16    1.72  
Robust Estimate of Covariance:
        Volume    Rate
Volume   0.313  -0.167
Rate    -0.167   0.728
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
wagnerGrowth FastMCD  63   6  35     6.610368
wagnerGrowth detMCD   63   6  35     6.511864
Best subsamples: 
    FastMCD:  [1]  2  3  4  5  6  7  9 10 11 12 13 16 18 20 23 25 26 27 31 32 35 36 38 41 44
[26] 48 51 52 53 54 55 56 57 60 62
     detMCD:  [1]  2  3  4  5  6  7  9 10 11 12 13 16 17 18 20 23 25 27 31 32 35 36 38 41 44
[26] 48 51 52 53 54 55 56 57 60 62
 Difference  detMCD - FastMCD:[1] 17
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=35); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  6.61 

Robust Estimate of Location:
Region      PA     GPA      HS     GHS       y  
10.872  33.408  -1.919   2.461   0.369   7.879  
Robust Estimate of Covariance:
         Region        PA      GPA        HS       GHS       y
Region  35.3392   15.3047   0.0232  -0.55317  -0.35789   -8.77
PA      15.3047   21.7332  -3.7447  -0.73355   0.09486  -24.54
GPA      0.0232   -3.7447   5.1610   0.23781  -0.14571    5.34
HS      -0.5532   -0.7336   0.2378   0.68319   0.00711    2.02
GHS     -0.3579    0.0949  -0.1457   0.00711   0.24753    1.40
y       -8.7720  -24.5388   5.3353   2.01779   1.39654   78.82
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
        fish FastMCD 158   6  82     8.879005
        fish detMCD  158   6  82     8.880459
Best subsamples: 
    FastMCD:  [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
[20]  20  21  22  23  24  25  26  27  28  30  32  35  36  37  42  43  44  45  46
[39]  47  48  49  50  51  52  53  54  55  56  57  58  59  60 107 109 110 111 113
[58] 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
[77] 134 135 136 137 138 139
     detMCD:  [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
[20]  20  21  22  23  24  25  26  27  35  36  37  42  43  44  45  46  47  48  49
[39]  50  51  52  53  54  55  56  57  58  59  60 106 107 108 109 110 111 112 113
[58] 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
[77] 134 135 136 137 138 139
 Difference  detMCD - FastMCD:[1] 106 108 112
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=82); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  8.88 

Robust Estimate of Location:
 Weight  Length1  Length2  Length3   Height    Width  
  329.9     24.5     26.6     29.7     31.1     14.7  
Robust Estimate of Covariance:
          Weight  Length1  Length2  Length3   Height   Width
Weight   69083.0  1477.81   1613.6  1992.62  1439.32  -62.12
Length1   1477.8    34.68     37.6    45.51    28.82   -1.31
Length2   1613.6    37.61     40.9    49.52    31.81   -1.40
Length3   1992.6    45.51     49.5    61.16    42.65   -2.25
Height    1439.3    28.82     31.8    42.65    46.74   -2.82
Width      -62.1    -1.31     -1.4    -2.25    -2.82    1.01
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
     pottery FastMCD  27   6  17   -10.586933
     pottery detMCD   27   6  17   -10.586933
Best subsamples: 
    FastMCD:  [1]  1  2  4  5  6  9 10 11 13 14 15 19 20 21 22 26 27
 detMCD is the same as FastMCD
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=17); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  -10.6 

Robust Estimate of Location:
    SI      AL      FE      MG      CA      TI  
54.983  15.206   9.700   3.817   5.211   0.859  
Robust Estimate of Covariance:
         SI       AL       FE       MG       CA        TI
SI  20.5823   2.2874  -0.0204   2.1265  -1.8023   0.08821
AL   2.2874   4.0361  -0.6302  -2.4997   0.2084  -0.02038
FE  -0.0204  -0.6302   0.2780   0.5338  -0.3512   0.01427
MG   2.1265  -2.4997   0.5338   2.7956  -0.1579   0.02847
CA  -1.8023   0.2084  -0.3512  -0.1579   1.2324  -0.03465
TI   0.0882  -0.0204   0.0143   0.0285  -0.0347   0.00175
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
        rice FastMCD 105   6  56   -14.463986
        rice detMCD  105   6  56   -14.423048
Best subsamples: 
    FastMCD:  [1]   2   4   6   8  10  12  15  18  21  22  24  29  30  31  32  33  34  36  37
[20]  38  41  44  45  47  51  52  53  54  55  59  61  65  67  68  69  70  72  76
[39]  78  79  80  81  82  83  84  85  86  92  93  94  95  97  98  99 102 105
     detMCD:  [1]   4   6   8  10  13  15  16  17  18  25  27  29  30  31  32  33  34  36  37
[20]  38  44  45  47  51  52  53  55  59  60  65  66  67  70  72  74  76  78  79
[39]  80  81  82  83  84  85  86  90  92  93  94  95  97  98  99 100 101 105
 Difference  detMCD - FastMCD: [1]  13  16  17  25  27  60  66  74  90 100 101
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=56); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  -14.5 

Robust Estimate of Location:
             Favor          Appearance               Taste          Stickiness  
           -0.2731              0.0600             -0.1468              0.0646  
         Toughness  Overall_evaluation  
            0.0894             -0.2192  
Robust Estimate of Covariance:
                     Favor  Appearance   Taste  Stickiness  Toughness
Favor                0.388       0.323   0.393       0.389     -0.195
Appearance           0.323       0.503   0.494       0.494     -0.270
Taste                0.393       0.494   0.640       0.629     -0.361
Stickiness           0.389       0.494   0.629       0.815     -0.486
Toughness           -0.195      -0.270  -0.361      -0.486      0.451
Overall_evaluation   0.471       0.575   0.723       0.772     -0.457
                    Overall_evaluation
Favor                            0.471
Appearance                       0.575
Taste                            0.723
Stickiness                       0.772
Toughness                       -0.457
Overall_evaluation               0.882
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
        un86 FastMCD  73   7  40    16.891076
        un86 detMCD   73   7  40    17.117142
Best subsamples: 
    FastMCD:  [1]  9 10 12 14 16 17 18 20 23 24 26 27 31 32 33 37 39 41 42 45 47 48 49 50 51
[26] 52 55 56 57 60 61 62 63 64 65 67 70 71 72 73
     detMCD:  [1]  2  9 10 12 14 16 17 18 19 20 23 24 25 26 27 31 32 33 37 39 42 48 49 50 51
[26] 52 55 56 57 60 61 62 63 64 65 67 70 71 72 73
 Difference  detMCD - FastMCD:[1]  2 19 25
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=40); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  16.9 

Robust Estimate of Location:
   POP     MOR     CAR      DR     GNP     DEN      TB  
20.364  69.750   6.463   0.859   1.133  59.998   0.439  
Robust Estimate of Covariance:
         POP      MOR       CAR        DR       GNP      DEN       TB
POP  575.827   243.29   -12.910   -2.4098   -3.0456   160.82   0.4208
MOR  243.291  2376.56  -282.081  -33.9548  -33.9168  -718.68  -1.0522
CAR  -12.910  -282.08    56.808    5.6651    6.4636    86.27   0.2616
DR    -2.410   -33.95     5.665    0.9009    0.5568    18.60   0.0154
GNP   -3.046   -33.92     6.464    0.5568    1.3929    10.67   0.0067
DEN  160.825  -718.68    86.269   18.6034   10.6747  2512.64  -1.1705
TB     0.421    -1.05     0.262    0.0154    0.0067    -1.17   0.0181
--------------------------------------------------------
Data Set               n   p  h(alf) LOG(obj)
=============================================
       wages FastMCD  36   9  23    25.658041
       wages detMCD   36   9  23    25.722758
Best subsamples: 
    FastMCD:  [1]  1  2  3  6  7  8 10 11 12 14 15 17 20 21 22 23 25 26 27 33 34 35 36
     detMCD:  [1]  1  2  3  6  7  8 10 11 14 15 17 20 21 22 23 25 27 29 31 33 34 35 36
 Difference  detMCD - FastMCD:[1] 29 31
Details about FastMCD : Outliers:  0 
-------------
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=23); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = x, trace = trace)
Log(Det.):  25.7 

Robust Estimate of Location:
    HRS     RATE     ERSP     ERNO     NEIN    ASSET      AGE      DEP  
2140.17     2.85  1133.30   307.48   343.26  6539.43    39.57     2.44  
 SCHOOL  
  10.07  
Robust Estimate of Covariance:
              HRS       RATE       ERSP       ERNO      NEIN     ASSET
HRS       4433.91    19.7358   -3585.03   -990.563    8227.4    184546
RATE        19.74     0.2393       8.06      1.048      59.2      1373
ERSP     -3585.03     8.0565   12399.96    995.108   -4363.3    -78026
ERNO      -990.56     1.0481     995.11   2190.581    -426.0     -9925
NEIN      8227.37    59.1712   -4363.27   -425.985   19585.3    441574
ASSET   184546.39  1373.0630  -78025.61  -9925.182  441574.2  10017473
AGE        -46.58    -0.2052      18.34     19.517     -83.0     -1898
DEP         -6.57    -0.0985      -2.85      0.499     -20.6      -471
SCHOOL      59.89     0.5677       7.54     -4.821     153.0      3541
              AGE        DEP    SCHOOL
HRS     -4.66e+01    -6.5659    59.885
RATE    -2.05e-01    -0.0985     0.568
ERSP     1.83e+01    -2.8522     7.540
ERNO     1.95e+01     0.4986    -4.821
NEIN    -8.30e+01   -20.6329   153.022
ASSET   -1.90e+03  -471.1344  3540.557
AGE      7.72e-01     0.0412    -0.684
DEP      4.12e-02     0.0873    -0.240
SCHOOL  -6.84e-01    -0.2402     1.453
--------------------------------------------------------
========================================================

> warnings() ## in one example  n < 2 * p ..
Warning message:
In covMcd(X, use.correction = FALSE) :
  n < 2 * p, i.e., possibly too small sample size

> ###' Test the exact fit property of CovMcd --------------------------------
> 
> ##' generate "exact fit" data
> d.exact <- function(seed=seed, p=2) {
+     stopifnot(p >= 1)
+     set.seed(seed)
+     n1 <- 45
+     x1 <- matrix(rnorm(p*n1), nrow=n1, ncol=p)
+     x1[,p] <- x1[,p] + 3
+     n2 <- 55
+     m2 <- 3
+     x <- rbind(x1, cbind(matrix(rnorm((p-1)*n2), n2, p-1), rep(m2,n2)))
+     colnames(x) <- paste0("X", 1:p)
+     x
+ }

> plot(d.exact(18, p=2))

> pairs(d.exact(1234, p=3), gap=0.1)

> for(p in c(2,4))
+ for(sid in c(2, 4, 18, 1234)) {
+     cat("\nseed = ",sid,"; p = ",p,":\n")
+     d.x <- d.exact(sid, p=p)
+     d2 <- covMcd(d.x)
+     ## Gave error {for p=2, seeds 2, 4, 18 also on 64-bit}:
+     ## At line 729 of file rffastmcd.f
+     ## Fortran runtime error: Index '6' of dimension 1 of array 'z' above upper bound of 4
+     print(d2)
+     if(FALSE) ## FIXME fails when calling eigen() in "r6pack()"
+         d2. <- covMcd(d.x, nsamp = "deterministic", scalefn = Qn)
+     stopifnot(d2$singularity$kind == "on.hyperplane")
+ }

seed =  2 ; p =  2 :
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=51); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = d.x)
The 51-th order statistic of the absolute deviation of variable 2 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the line with equation 0 (x_i1-m_1) + 1 (x_i2-m_2) = 0 with (m_1,m_2)
the mean of these observations.
Log(Det.):  -Inf 

Robust Estimate of Location:
   X1     X2  
0.158  3.000  
Robust Estimate of Covariance:
      X1  X2
X1  4.26   0
X2  0.00   0

seed =  4 ; p =  2 :
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=51); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = d.x)
The 51-th order statistic of the absolute deviation of variable 2 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the line with equation 0 (x_i1-m_1) + 1 (x_i2-m_2) = 0 with (m_1,m_2)
the mean of these observations.
Log(Det.):  -Inf 

Robust Estimate of Location:
    X1      X2  
0.0133  3.0000  
Robust Estimate of Covariance:
           X1         X2
X1   3.59e+00  -8.53e-17
X2  -8.53e-17   0.00e+00

seed =  18 ; p =  2 :
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=51); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = d.x)
The 51-th order statistic of the absolute deviation of variable 2 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the line with equation 0 (x_i1-m_1) + 1 (x_i2-m_2) = 0 with (m_1,m_2)
the mean of these observations.
Log(Det.):  -Inf 

Robust Estimate of Location:
    X1      X2  
0.0277  3.0000  
Robust Estimate of Covariance:
           X1         X2
X1   3.01e+00  -1.14e-16
X2  -5.69e-17   0.00e+00

seed =  1234 ; p =  2 :
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=51); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = d.x)
The 51-th order statistic of the absolute deviation of variable 2 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the line with equation 0 (x_i1-m_1) + 1 (x_i2-m_2) = 0 with (m_1,m_2)
the mean of these observations.
Log(Det.):  -Inf 

Robust Estimate of Location:
    X1      X2  
0.0621  3.0000  
Robust Estimate of Covariance:
           X1         X2
X1   2.86e+00  -1.14e-16
X2  -1.14e-16   0.00e+00

seed =  2 ; p =  4 :
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=52); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = d.x)
The 52-th order statistic of the absolute deviation of variable 4 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p)
= 0 with (m_1, ..., m_p) the mean of these observations and
coefficients a_i from the vector a <- c(0, 0, 0, 1)
Log(Det.):  -Inf 

Robust Estimate of Location:
   X1     X2     X3     X4  
0.033  0.197  0.160  3.000  
Robust Estimate of Covariance:
           X1      X2      X3         X4
X1   2.52e+00   0.185  -0.113  -2.61e-16
X2   1.85e-01   2.236  -0.141   0.00e+00
X3  -1.13e-01  -0.141   1.789   0.00e+00
X4  -2.61e-16   0.000   0.000   0.00e+00

seed =  4 ; p =  4 :
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=52); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = d.x)
The 52-th order statistic of the absolute deviation of variable 4 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p)
= 0 with (m_1, ..., m_p) the mean of these observations and
coefficients a_i from the vector a <- c(0, 0, 0, 1)
Log(Det.):  -Inf 

Robust Estimate of Location:
      X1        X2        X3        X4  
-0.00568  -0.08741  -0.08413   3.00000  
Robust Estimate of Covariance:
           X1         X2         X3        X4
X1   2.24e+00   1.70e-01  -8.48e-02  1.07e-16
X2   1.70e-01   1.95e+00  -1.09e-01  1.49e-16
X3  -8.48e-02  -1.09e-01   2.20e+00  1.49e-16
X4   1.07e-16   7.45e-17   1.49e-16  0.00e+00

seed =  18 ; p =  4 :
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=52); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = d.x)
The 52-th order statistic of the absolute deviation of variable 4 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p)
= 0 with (m_1, ..., m_p) the mean of these observations and
coefficients a_i from the vector a <- c(0, 0, 0, 1)
Log(Det.):  -Inf 

Robust Estimate of Location:
     X1       X2       X3       X4  
-0.1567   0.0415   0.0109   3.0000  
Robust Estimate of Covariance:
           X1         X2         X3         X4
X1   2.59e+00   3.97e-02  -4.40e-01  -4.47e-16
X2   3.97e-02   2.21e+00  -3.44e-01  -7.45e-17
X3  -4.40e-01  -3.44e-01   2.55e+00   2.61e-16
X4  -4.47e-16  -7.45e-17   2.52e-16   0.00e+00

seed =  1234 ; p =  4 :
Minimum Covariance Determinant (MCD) estimator approximation.
Method: Fast MCD(alpha=0.5 ==> h=52); nsamp = 500; (n,k)mini = (300,5)
Call:
covMcd(x = d.x)
The 52-th order statistic of the absolute deviation of variable 4 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p)
= 0 with (m_1, ..., m_p) the mean of these observations and
coefficients a_i from the vector a <- c(0, 0, 0, 1)
Log(Det.):  -Inf 

Robust Estimate of Location:
    X1      X2      X3      X4  
0.1901  0.0538  0.0847  3.0000  
Robust Estimate of Covariance:
          X1         X2       X3        X4
X1  2.79e+00   2.21e-01   0.1668  5.96e-16
X2  2.21e-01   2.02e+00  -0.0216  1.49e-16
X3  1.67e-01  -2.16e-02   1.7319  0.00e+00
X4  5.96e-16   1.49e-16   0.0000  0.00e+00

> ## TODO: also get examples of other singularity$kind's
> 
Warning messages:
1: In covMcd(d.x) :
  The 51-th order statistic of the absolute deviation of variable 2 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the line with equation 0 (x_i1-m_1) + 1 (x_i2-m_2) = 0 with (m_1,m_2)
the mean of these observations.
2: In covMcd(d.x) :
  The 51-th order statistic of the absolute deviation of variable 2 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the line with equation 0 (x_i1-m_1) + 1 (x_i2-m_2) = 0 with (m_1,m_2)
the mean of these observations.
3: In covMcd(d.x) :
  The 51-th order statistic of the absolute deviation of variable 2 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the line with equation 0 (x_i1-m_1) + 1 (x_i2-m_2) = 0 with (m_1,m_2)
the mean of these observations.
4: In covMcd(d.x) :
  The 51-th order statistic of the absolute deviation of variable 2 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the line with equation 0 (x_i1-m_1) + 1 (x_i2-m_2) = 0 with (m_1,m_2)
the mean of these observations.
5: In covMcd(d.x) :
  The 52-th order statistic of the absolute deviation of variable 4 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p)
= 0 with (m_1, ..., m_p) the mean of these observations and
coefficients a_i from the vector a <- c(0, 0, 0, 1)
6: In covMcd(d.x) :
  The 52-th order statistic of the absolute deviation of variable 4 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p)
= 0 with (m_1, ..., m_p) the mean of these observations and
coefficients a_i from the vector a <- c(0, 0, 0, 1)
7: In covMcd(d.x) :
  The 52-th order statistic of the absolute deviation of variable 4 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p)
= 0 with (m_1, ..., m_p) the mean of these observations and
coefficients a_i from the vector a <- c(0, 0, 0, 1)
8: In covMcd(d.x) :
  The 52-th order statistic of the absolute deviation of variable 4 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p)
= 0 with (m_1, ..., m_p) the mean of these observations and
coefficients a_i from the vector a <- c(0, 0, 0, 1)
> ##   ----------- including simple "exactfit" (code = 3)
> warnings()
Warning messages:
1: In covMcd(d.x) :
  The 51-th order statistic of the absolute deviation of variable 2 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the line with equation 0 (x_i1-m_1) + 1 (x_i2-m_2) = 0 with (m_1,m_2)
the mean of these observations.
2: In covMcd(d.x) :
  The 51-th order statistic of the absolute deviation of variable 2 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the line with equation 0 (x_i1-m_1) + 1 (x_i2-m_2) = 0 with (m_1,m_2)
the mean of these observations.
3: In covMcd(d.x) :
  The 51-th order statistic of the absolute deviation of variable 2 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the line with equation 0 (x_i1-m_1) + 1 (x_i2-m_2) = 0 with (m_1,m_2)
the mean of these observations.
4: In covMcd(d.x) :
  The 51-th order statistic of the absolute deviation of variable 2 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the line with equation 0 (x_i1-m_1) + 1 (x_i2-m_2) = 0 with (m_1,m_2)
the mean of these observations.
5: In covMcd(d.x) :
  The 52-th order statistic of the absolute deviation of variable 4 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p)
= 0 with (m_1, ..., m_p) the mean of these observations and
coefficients a_i from the vector a <- c(0, 0, 0, 1)
6: In covMcd(d.x) :
  The 52-th order statistic of the absolute deviation of variable 4 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p)
= 0 with (m_1, ..., m_p) the mean of these observations and
coefficients a_i from the vector a <- c(0, 0, 0, 1)
7: In covMcd(d.x) :
  The 52-th order statistic of the absolute deviation of variable 4 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p)
= 0 with (m_1, ..., m_p) the mean of these observations and
coefficients a_i from the vector a <- c(0, 0, 0, 1)
8: In covMcd(d.x) :
  The 52-th order statistic of the absolute deviation of variable 4 is
zero.
There are 55 observations (in the entire dataset of 100 obs.) lying on
the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p)
= 0 with (m_1, ..., m_p) the mean of these observations and
coefficients a_i from the vector a <- c(0, 0, 0, 1)
> 
> showProc.time()
Time (user system elapsed): 1.78 0.09 1.87 
> if(!robustbase:::doExtras()) quit()
> proc.time()
   user  system elapsed 
   5.54    0.62    6.15