R Under development (unstable) (2024-08-15 r87022 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ### lmrob() with "real data" ----------------------- > > ## testing functions: > source(system.file("xtraR/test-tools.R", package = "robustbase")) > (doExtras <- robustbase:::doExtras()) [1] FALSE > showProc.time() Time (user system elapsed): 0.08 0 0.08 > > library(robustbase) > > ##' short form to get "pure" robustness weights > rw <- function(fm) unname(weights(fm, type="robustness")) > > set.seed(0) > data(salinity) > summary(m0.sali <- lmrob(Y ~ . , data = salinity)) Call: lmrob(formula = Y ~ ., data = salinity) \--> method = "MM" Residuals: Min 1Q Median 3Q Max -2.4326 -0.4018 0.1741 0.5272 5.8751 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 18.39327 4.01996 4.575 0.000122 *** X1 0.71048 0.04938 14.388 2.68e-13 *** X2 -0.17770 0.14762 -1.204 0.240397 X3 -0.62733 0.15845 -3.959 0.000584 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Robust residual standard error: 1 Multiple R-squared: 0.8983, Adjusted R-squared: 0.8856 Convergence in 11 IRWLS iterations Robustness weights: observation 16 is an outlier with |weight| = 0 ( < 0.0036); 2 weights are ~= 1. The remaining 25 ones are summarized as Min. 1st Qu. Median Mean 3rd Qu. Max. 0.5335 0.8269 0.9760 0.9112 0.9952 0.9989 Algorithmic parameters: tuning.chi bb tuning.psi refine.tol 1.548e+00 5.000e-01 4.685e+00 1.000e-07 rel.tol scale.tol solve.tol zero.tol 1.000e-07 1.000e-10 1.000e-07 1.000e-10 eps.outlier eps.x warn.limit.reject warn.limit.meanrw 3.571e-03 6.083e-11 5.000e-01 5.000e-01 nResample max.it best.r.s k.fast.s k.max 500 50 2 1 200 maxit.scale trace.lev mts compute.rd fast.s.large.n 200 0 1000 0 2000 psi subsampling cov "bisquare" "nonsingular" ".vcov.avar1" compute.outlier.stats "SM" seed : int(0) > (A1 <- anova(m0.sali, Y ~ X1 + X3)) Robust Wald Test Table Model 1: Y ~ X1 + X2 + X3 Model 2: Y ~ X1 + X3 Largest model fitted by lmrob(), i.e. SM pseudoDf Test.Stat Df Pr(>chisq) 1 24 2 25 1.4492 1 0.2287 > ## -> X2 is not needed > (m1.sali <- lmrob(Y ~ X1 + X3, data = salinity)) Call: lmrob(formula = Y ~ X1 + X3, data = salinity) \--> method = "MM" Coefficients: (Intercept) X1 X3 15.8169 0.7210 -0.5415 > (A2 <- anova(m0.sali, m1.sali)) # the same as before Robust Wald Test Table Model 1: Y ~ X1 + X2 + X3 Model 2: Y ~ X1 + X3 Largest model fitted by lmrob(), i.e. SM pseudoDf Test.Stat Df Pr(>chisq) 1 24 2 25 1.4492 1 0.2287 > stopifnot(all.equal(A1[2,"Pr(>chisq)"], + A2[2,"Pr(>chisq)"], tolerance=1e-14)) > anova(m0.sali, m1.sali, test = "Deviance") Robust Deviance Table Model 1: Y ~ X1 + X2 + X3 Model 2: Y ~ X1 + X3 Largest model fitted by lmrob(), i.e. SM pseudoDf Test.Stat Df Pr(>chisq) 1 24 2 25 1.9567 1 0.1619 > ## whereas 'X3' is highly significant: > m2 <- update(m0.sali, ~ . -X3) > (A3 <- anova(m0.sali, m2)) Robust Wald Test Table Model 1: Y ~ X1 + X2 + X3 Model 2: Y ~ X1 + X2 Largest model fitted by lmrob(), i.e. SM pseudoDf Test.Stat Df Pr(>chisq) 1 24 2 25 15.675 1 7.521e-05 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > (A4 <- anova(m0.sali, m2, test = "Deviance")) Robust Deviance Table Model 1: Y ~ X1 + X2 + X3 Model 2: Y ~ X1 + X2 Largest model fitted by lmrob(), i.e. SM pseudoDf Test.Stat Df Pr(>chisq) 1 24 2 25 19.65 1 9.302e-06 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > cX3 <- c(Estimate = -0.627327396, `Std. Error` = 0.15844971, + `t value` = -3.9591577, `Pr(>|t|)` = 0.000584156) > stopifnot(all.equal(cX3, coef(summary(m0.sali))["X3",], tolerance = 1e-6)) > showProc.time() Time (user system elapsed): 0.06 0.01 0.08 > > > ## example(lmrob) > set.seed(7) > data(coleman) > summary( m1 <- lmrob(Y ~ ., data=coleman) ) Call: lmrob(formula = Y ~ ., data = coleman) \--> method = "MM" Residuals: Min 1Q Median 3Q Max -4.16181 -0.39226 0.01611 0.55619 7.22766 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 30.50232 6.71260 4.544 0.000459 *** salaryP -1.66615 0.43129 -3.863 0.001722 ** fatherWc 0.08425 0.01467 5.741 5.10e-05 *** sstatus 0.66774 0.03385 19.726 1.30e-11 *** teacherSc 1.16778 0.10983 10.632 4.35e-08 *** motherLev -4.13657 0.92084 -4.492 0.000507 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Robust residual standard error: 1.134 Multiple R-squared: 0.9814, Adjusted R-squared: 0.9747 Convergence in 11 IRWLS iterations Robustness weights: observation 18 is an outlier with |weight| = 0 ( < 0.005); The remaining 19 ones are summarized as Min. 1st Qu. Median Mean 3rd Qu. Max. 0.1491 0.9412 0.9847 0.9279 0.9947 0.9982 Algorithmic parameters: tuning.chi bb tuning.psi refine.tol 1.548e+00 5.000e-01 4.685e+00 1.000e-07 rel.tol scale.tol solve.tol zero.tol 1.000e-07 1.000e-10 1.000e-07 1.000e-10 eps.outlier eps.x warn.limit.reject warn.limit.meanrw 5.000e-03 1.569e-10 5.000e-01 5.000e-01 nResample max.it best.r.s k.fast.s k.max 500 50 2 1 200 maxit.scale trace.lev mts compute.rd fast.s.large.n 200 0 1000 0 2000 psi subsampling cov "bisquare" "nonsingular" ".vcov.avar1" compute.outlier.stats "SM" seed : int(0) > stopifnot(identical(which(rw(m1) < 0.2), c(3L, 18L))) > > if(FALSE) # to find out *why setting = "KS201x" fails + trace(lmrob.S, exit = quote({cat("coef:\n"); print(b$coefficients)})) > if(FALSE) # to find out via setting = "KS201x" fails here in the *initial* estimate + debug(lmrob.S) > > data(starsCYG) > lmST <- lm(log.light ~ log.Te, data = starsCYG) > (RlmST <- lmrob(log.light ~ log.Te, data = starsCYG, control=lmrob.control(trace = 1))) lmrob_S(n = 47, nRes = 500): fast_s() [non-large n]: Subsampling 500 times to find candidate betas: Now refine() to convergence for 2 very best ones: Best[0]: convergence (63 iter.): -> improved scale to 0.471457903157204 Best[1]: convergence (63 iter.) lmrob.S(): scale = 0.471458; coeff.= [1] -9.570840 3.290363 init converged (remaining method = "M") -> coef= (Intercept) log.Te -9.570840 3.290363 lmrob_MM(): rwls(): rwls() used 15 it.; last ||b0 - b1||_1 = 6.47021e-07, L(b1) = 0.166430436662; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2, outlierStats() step "M" -> new coef= (Intercept) log.Te -4.969388 2.253161 Call: lmrob(formula = log.light ~ log.Te, data = starsCYG, control = lmrob.control(trace = 1)) \--> method = "MM" Coefficients: (Intercept) log.Te -4.969 2.253 > summary(RlmST) Call: lmrob(formula = log.light ~ log.Te, data = starsCYG, control = lmrob.control(trace = 1)) \--> method = "MM" Residuals: Min 1Q Median 3Q Max -0.80959 -0.28838 0.00282 0.36668 3.39585 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -4.9694 3.4100 -1.457 0.15198 log.Te 2.2532 0.7691 2.930 0.00531 ** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Robust residual standard error: 0.4715 Multiple R-squared: 0.3737, Adjusted R-squared: 0.3598 Convergence in 15 IRWLS iterations Robustness weights: 4 observations c(11,20,30,34) are outliers with |weight| = 0 ( < 0.0021); 4 weights are ~= 1. The remaining 39 ones are summarized as Min. 1st Qu. Median Mean 3rd Qu. Max. 0.6533 0.9171 0.9593 0.9318 0.9848 0.9986 Algorithmic parameters: tuning.chi bb tuning.psi refine.tol 1.548e+00 5.000e-01 4.685e+00 1.000e-07 rel.tol scale.tol solve.tol zero.tol 1.000e-07 1.000e-10 1.000e-07 1.000e-10 eps.outlier eps.x warn.limit.reject warn.limit.meanrw 2.128e-03 8.404e-12 5.000e-01 5.000e-01 nResample max.it best.r.s k.fast.s k.max 500 50 2 1 200 maxit.scale trace.lev mts compute.rd fast.s.large.n 200 1 1000 0 2000 psi subsampling cov "bisquare" "nonsingular" ".vcov.avar1" compute.outlier.stats "SM" seed : int(0) > ## Least Sq. w/ negative slope, where robust has slope ~= 2.2 : > stopifnot(exprs = { + coef(lmST)[["log.Te"]] < 0 + all.equal(coef(RlmST), c("(Intercept)" = -4.969, log.Te=2.253), tol = 1e-3) + identical(which(rw(RlmST) < 0.01), as.integer( c(11,20,30,34) )) + }) > showProc.time() Time (user system elapsed): 0.05 0.02 0.06 > ## ==> Now see that "KS2011" and "KS2014" both break down -- and it is the fault of "lqq" *only* : > (RlmST.11 <- update(RlmST, control = lmrob.control("KS2011", trace= 1))) lmrob_S(n = 47, nRes = 500): fast_s() [non-large n]: Subsampling 500 times to find candidate betas: Now refine() to convergence for 2 very best ones: Best[0]: convergence (43 iter.): -> improved scale to 0.481444964842138 Best[1]: convergence (42 iter.) lmrob.S(): scale = 0.481445; coeff.= [1] -10.291890 3.453736 init converged (remaining method = "MDM") -> coef= (Intercept) log.Te -10.291890 3.453736 lmrob_MM(): rwls(): rwls() used 30 it.; last ||b0 - b1||_1 = 7.23254e-07, L(b1) = 0.1282284566; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2 step "M" -> new coef= (Intercept) log.Te 6.918146 -0.437092 step "D" -> new coef= (Intercept) log.Te 6.918146 -0.437092 lmrob_MM(): rwls(): rwls() used 8 it.; last ||b0 - b1||_1 = 6.55954e-07, L(b1) = 0.0864138839064; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2, outlierStats() step "M" -> new coef= (Intercept) log.Te 6.8435082 -0.4226776 Call: lmrob(formula = log.light ~ log.Te, data = starsCYG, control = lmrob.control("KS2011", trace = 1)) \--> method = "SMDM" Coefficients: (Intercept) log.Te 6.8435 -0.4227 > (RlmST.14 <- update(RlmST, control = lmrob.control("KS2014", trace= 1))) lmrob_S(n = 47, nRes = 1000): fast_s() [non-large n]: Subsampling 1000 times to find candidate betas: Now refine() to convergence for 20 very best ones: Best[0]: convergence (38 iter.): -> improved scale to 0.481444964846043 Best[1]: convergence (42 iter.): -> improved scale to 0.481444964841872 Best[2]: convergence (42 iter.) Best[3]: convergence (38 iter.) Best[4]: convergence (43 iter.): -> improved scale to 0.48144496484158 Best[5]: convergence (38 iter.) Best[6]: convergence (45 iter.): -> improved scale to 0.481444964841557 Best[7]: convergence (42 iter.) Best[8]: convergence (41 iter.) Best[9]: convergence (42 iter.) Best[10]: convergence (46 iter.): -> improved scale to 0.481444964841469 Best[11]: convergence (46 iter.): -> improved scale to 0.481444964841469 Best[12]: convergence (38 iter.) Best[13]: convergence (38 iter.) Best[14]: convergence (42 iter.) Best[15]: convergence (40 iter.) Best[16]: convergence (36 iter.): -> improved scale to 0.481444964841311 Best[17]: convergence (37 iter.) Best[18]: convergence (41 iter.) Best[19]: convergence (39 iter.) lmrob.S(): scale = 0.481445; coeff.= [1] -10.291884 3.453735 init converged (remaining method = "MDM") -> coef= (Intercept) log.Te -10.291884 3.453735 lmrob_MM(): rwls(): rwls() used 30 it.; last ||b0 - b1||_1 = 7.23253e-07, L(b1) = 0.128228456601; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2 step "M" -> new coef= (Intercept) log.Te 6.918146 -0.437092 step "D" -> new coef= (Intercept) log.Te 6.918146 -0.437092 lmrob_MM(): rwls(): rwls() used 8 it.; last ||b0 - b1||_1 = 6.55954e-07, L(b1) = 0.0864138839064; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2, outlierStats() step "M" -> new coef= (Intercept) log.Te 6.8435082 -0.4226776 Call: lmrob(formula = log.light ~ log.Te, data = starsCYG, control = lmrob.control("KS2014", trace = 1)) \--> method = "SMDM" Coefficients: (Intercept) log.Te 6.8435 -0.4227 > (RlmSTM11 <- update(RlmST, control = lmrob.control("KS2011", method="MM", trace= 1))) lmrob_S(n = 47, nRes = 500): fast_s() [non-large n]: Subsampling 500 times to find candidate betas: Now refine() to convergence for 2 very best ones: Best[0]: convergence (39 iter.): -> improved scale to 0.481444964843829 Best[1]: convergence (39 iter.) lmrob.S(): scale = 0.481445; coeff.= [1] -10.291884 3.453735 init converged (remaining method = "M") -> coef= (Intercept) log.Te -10.291884 3.453735 lmrob_MM(): rwls(): rwls() used 30 it.; last ||b0 - b1||_1 = 7.23253e-07, L(b1) = 0.128228456599; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2, outlierStats() step "M" -> new coef= (Intercept) log.Te 6.918146 -0.437092 Call: lmrob(formula = log.light ~ log.Te, data = starsCYG, control = lmrob.control("KS2011", method = "MM", trace = 1)) Coefficients: (Intercept) log.Te 6.9181 -0.4371 > (RlmSTM14 <- update(RlmST, control = lmrob.control("KS2014", method="MM", trace= 1))) lmrob_S(n = 47, nRes = 1000): fast_s() [non-large n]: Subsampling 1000 times to find candidate betas: Now refine() to convergence for 20 very best ones: Best[0]: convergence (39 iter.): -> improved scale to 0.481444964844002 Best[1]: convergence (42 iter.): -> improved scale to 0.481444964841884 Best[2]: convergence (46 iter.): -> improved scale to 0.481444964841469 Best[3]: convergence (38 iter.) Best[4]: convergence (40 iter.) Best[5]: convergence (43 iter.) Best[6]: convergence (45 iter.) Best[7]: convergence (36 iter.): -> improved scale to 0.481444964841312 Best[8]: convergence (42 iter.) Best[9]: convergence (43 iter.) Best[10]: convergence (45 iter.) Best[11]: convergence (46 iter.) Best[12]: convergence (39 iter.) Best[13]: convergence (46 iter.) Best[14]: convergence (41 iter.) Best[15]: convergence (41 iter.) Best[16]: convergence (38 iter.) Best[17]: convergence (41 iter.) Best[18]: convergence (36 iter.): -> improved scale to 0.481444964841311 Best[19]: convergence (38 iter.) lmrob.S(): scale = 0.481445; coeff.= [1] -10.291884 3.453735 init converged (remaining method = "M") -> coef= (Intercept) log.Te -10.291884 3.453735 lmrob_MM(): rwls(): rwls() used 30 it.; last ||b0 - b1||_1 = 7.23253e-07, L(b1) = 0.128228456601; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2, outlierStats() step "M" -> new coef= (Intercept) log.Te 6.918146 -0.437092 Call: lmrob(formula = log.light ~ log.Te, data = starsCYG, control = lmrob.control("KS2014", method = "MM", trace = 1)) Coefficients: (Intercept) log.Te 6.9181 -0.4371 > ## using "biweight" instead of "lqq" fixes the problem : > (RlmSTbM11 <- update(RlmST,control = lmrob.control("KS2011", method="MM", psi="biweight",trace= 1))) lmrob_S(n = 47, nRes = 500): fast_s() [non-large n]: Subsampling 500 times to find candidate betas: Now refine() to convergence for 2 very best ones: Best[0]: convergence (64 iter.): -> improved scale to 0.471457903157194 Best[1]: convergence (62 iter.): -> improved scale to 0.471457903157193 lmrob.S(): scale = 0.471458; coeff.= [1] -9.570830 3.290361 init converged (remaining method = "M") -> coef= (Intercept) log.Te -9.570830 3.290361 lmrob_MM(): rwls(): rwls() used 15 it.; last ||b0 - b1||_1 = 6.47019e-07, L(b1) = 0.166430436662; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2, outlierStats() step "M" -> new coef= (Intercept) log.Te -4.969388 2.253161 Call: lmrob(formula = log.light ~ log.Te, data = starsCYG, control = lmrob.control("KS2011", method = "MM", psi = "biweight", trace = 1)) Coefficients: (Intercept) log.Te -4.969 2.253 > > > > > > > > > > > > > > > > (RlmSTbM14 <- update(RlmST,control = lmrob.control("KS2014", method="MM", psi="biweight",trace= 1))) lmrob_S(n = 47, nRes = 1000): fast_s() [non-large n]: Subsampling 1000 times to find candidate betas: Now refine() to convergence for 20 very best ones: Best[0]: convergence (66 iter.): -> improved scale to 0.471457903157196 Best[1]: convergence (69 iter.) Best[2]: convergence (72 iter.) Best[3]: convergence (66 iter.) Best[4]: convergence (69 iter.) Best[5]: convergence (59 iter.) Best[6]: convergence (69 iter.) Best[7]: convergence (64 iter.) Best[8]: convergence (63 iter.) Best[9]: convergence (60 iter.): -> improved scale to 0.471457903157194 Best[10]: convergence (69 iter.) Best[11]: convergence (73 iter.) Best[12]: convergence (69 iter.) Best[13]: convergence (72 iter.) Best[14]: convergence (60 iter.) Best[15]: convergence (67 iter.) Best[16]: convergence (73 iter.) Best[17]: convergence (73 iter.) Best[18]: convergence (66 iter.): -> improved scale to 0.471457903157194 Best[19]: convergence (65 iter.) lmrob.S(): scale = 0.471458; coeff.= [1] -9.570839 3.290363 init converged (remaining method = "M") -> coef= (Intercept) log.Te -9.570839 3.290363 lmrob_MM(): rwls(): rwls() used 15 it.; last ||b0 - b1||_1 = 6.47021e-07, L(b1) = 0.166430436662; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2, outlierStats() step "M" -> new coef= (Intercept) log.Te -4.969388 2.253161 Call: lmrob(formula = log.light ~ log.Te, data = starsCYG, control = lmrob.control("KS2014", method = "MM", psi = "biweight", trace = 1)) Coefficients: (Intercept) log.Te -4.969 2.253 > (RlmSTb.11 <- update(RlmST,control = lmrob.control("KS2011", psi="biweight",trace= 1))) lmrob_S(n = 47, nRes = 500): fast_s() [non-large n]: Subsampling 500 times to find candidate betas: Now refine() to convergence for 2 very best ones: Best[0]: convergence (62 iter.): -> improved scale to 0.471457903157193 Best[1]: convergence (60 iter.) lmrob.S(): scale = 0.471458; coeff.= [1] -9.570830 3.290361 init converged (remaining method = "MDM") -> coef= (Intercept) log.Te -9.570830 3.290361 lmrob_MM(): rwls(): rwls() used 15 it.; last ||b0 - b1||_1 = 6.47019e-07, L(b1) = 0.166430436662; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2 step "M" -> new coef= (Intercept) log.Te -4.969388 2.253161 step "D" -> new coef= (Intercept) log.Te -4.969388 2.253161 lmrob_MM(): rwls(): rwls() used 18 it.; last ||b0 - b1||_1 = 5.34262e-07, L(b1) = 0.19002394737; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2, outlierStats() step "M" -> new coef= (Intercept) log.Te -5.519602 2.377363 Call: lmrob(formula = log.light ~ log.Te, data = starsCYG, control = lmrob.control("KS2011", psi = "biweight", trace = 1)) \--> method = "SMDM" Coefficients: (Intercept) log.Te -5.520 2.377 > (RlmSTb.14 <- update(RlmST,control = lmrob.control("KS2014", psi="biweight",trace= 1))) lmrob_S(n = 47, nRes = 1000): fast_s() [non-large n]: Subsampling 1000 times to find candidate betas: Now refine() to convergence for 20 very best ones: Best[0]: convergence (69 iter.): -> improved scale to 0.471457903157197 Best[1]: convergence (63 iter.) Best[2]: convergence (59 iter.) Best[3]: convergence (69 iter.) Best[4]: convergence (65 iter.): -> improved scale to 0.471457903157197 Best[5]: convergence (69 iter.): -> improved scale to 0.471457903157196 Best[6]: convergence (65 iter.) Best[7]: convergence (63 iter.) Best[8]: convergence (54 iter.): -> improved scale to 0.471457903157195 Best[9]: convergence (63 iter.) Best[10]: convergence (69 iter.) Best[11]: convergence (64 iter.) Best[12]: convergence (63 iter.) Best[13]: convergence (69 iter.) Best[14]: convergence (72 iter.) Best[15]: convergence (72 iter.) Best[16]: convergence (59 iter.) Best[17]: convergence (62 iter.) Best[18]: convergence (65 iter.) Best[19]: convergence (69 iter.) lmrob.S(): scale = 0.471458; coeff.= [1] -9.570839 3.290363 init converged (remaining method = "MDM") -> coef= (Intercept) log.Te -9.570839 3.290363 lmrob_MM(): rwls(): rwls() used 15 it.; last ||b0 - b1||_1 = 6.47021e-07, L(b1) = 0.166430436662; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2 step "M" -> new coef= (Intercept) log.Te -4.969388 2.253161 step "D" -> new coef= (Intercept) log.Te -4.969388 2.253161 lmrob_MM(): rwls(): rwls() used 18 it.; last ||b0 - b1||_1 = 5.34262e-07, L(b1) = 0.19002394737; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2, outlierStats() step "M" -> new coef= (Intercept) log.Te -5.519602 2.377363 Call: lmrob(formula = log.light ~ log.Te, data = starsCYG, control = lmrob.control("KS2014", psi = "biweight", trace = 1)) \--> method = "SMDM" Coefficients: (Intercept) log.Te -5.520 2.377 > ## NB: RlmST has component 'init.S' the others have "init" -- documented in ?lmrob.fit == ../man/lmrob.fit.Rd > R.ini.cf <- t(sapply(mget(ls(patt = "^RlmST")), function(OB) OB$init$coef)) > R..cf <- t(sapply(mget(ls(patt = "^RlmST")), coef)) > cbind(R.ini.cf, R..cf) ##---> "lqq" is *NOT* robust enough here -- but "biweight" is !! (Intercept) log.Te (Intercept) log.Te RlmST -9.570840 3.290363 -4.969388 2.2531613 RlmST.11 6.918146 -0.437092 6.843508 -0.4226776 RlmST.14 6.918146 -0.437092 6.843508 -0.4226776 RlmSTM11 -10.291884 3.453735 6.918146 -0.4370920 RlmSTM14 -10.291884 3.453735 6.918146 -0.4370920 RlmSTb.11 -4.969388 2.253161 -5.519602 2.3773625 RlmSTb.14 -4.969388 2.253161 -5.519602 2.3773625 RlmSTbM11 -9.570830 3.290361 -4.969388 2.2531613 RlmSTbM14 -9.570839 3.290363 -4.969388 2.2531613 > > showProc.time() Time (user system elapsed): 0.14 0.01 0.15 > > options(digits = 5)# less platform dependence > ## Directly look at init.S(): > x.s <- model.matrix(~ log.Te, data = starsCYG) > y.s <- model.response(model.frame(log.light ~ log.Te, data = starsCYG)) > ini.df <- lmrob.S(x.s, y.s, control=lmrob.control()) > ini.11 <- lmrob.S(x.s, y.s, control=lmrob.control("KS2011")) > ini.14 <- lmrob.S(x.s, y.s, control=lmrob.control("KS2014")) > ## but these are fine !! : > rbind(deflt = ini.df$coef, + KS.11 = ini.11$coef, + KS.14 = ini.14$coef) (Intercept) log.Te deflt -9.5708 3.2904 KS.11 -10.2919 3.4537 KS.14 -10.2919 3.4537 > ##==> No, it is *not* the init.S() > ini.14$scale # 0.48144 [1] 0.48144 > > ## More clearly shows how M-estimate is converging to *WRONG* solution: > (RlmST.lqq <- update(RlmST, init=ini.14, control = lmrob.control(method="MM", psi="lqq", trace= 4))) init converged (remaining method = "M") -> coef= (Intercept) log.Te -10.2919 3.4537 lmrob_MM(): rwls(): Optimal block size for DGELS: 66 it 1: L(b1) = 0.147681612070 b1 = (-6.6618819441, 2.6340639721); ||b0 - b1||_1 = 4.44967 it 2: L(b1) = 0.146209615268 b1 = (-5.2419919965, 2.3137920346); ||b0 - b1||_1 = 1.74016 it 3: L(b1) = 0.145362365803 b1 = (-4.2304448192, 2.0852075731); ||b0 - b1||_1 = 1.24013 it 4: L(b1) = 0.144759412628 b1 = (-3.4189833736, 1.9016903202); ||b0 - b1||_1 = 0.994979 it 5: L(b1) = 0.144270875555 b1 = (-2.7192461869, 1.7433707239); ||b0 - b1||_1 = 0.858057 it 6: L(b1) = 0.143836413178 b1 = (-2.083891596, 1.5995645304); ||b0 - b1||_1 = 0.779161 it 7: L(b1) = 0.143421065140 b1 = (-1.484116341, 1.4637740506); ||b0 - b1||_1 = 0.735566 it 8: L(b1) = 0.142999928159 b1 = (-0.90016329109, 1.3315377372); ||b0 - b1||_1 = 0.716189 it 9: L(b1) = 0.142541799392 b1 = (-0.31491445522, 1.1989856438); ||b0 - b1||_1 = 0.717801 it 10: L(b1) = 0.141991304907 b1 = (0.29914863174, 1.059900841); ||b0 - b1||_1 = 0.753148 it 11: L(b1) = 0.141266096396 b1 = (0.96971969106, 0.90801782273); ||b0 - b1||_1 = 0.822454 it 12: L(b1) = 0.140223222362 b1 = (1.7294218328, 0.73597001412); ||b0 - b1||_1 = 0.93175 it 13: L(b1) = 0.138618563380 b1 = (2.6105562366, 0.53646574797); ||b0 - b1||_1 = 1.08064 it 14: L(b1) = 0.136078690971 b1 = (3.6365718171, 0.30421279471); ||b0 - b1||_1 = 1.25827 it 15: L(b1) = 0.132631773958 b1 = (4.7681381638, 0.048163485577); ||b0 - b1||_1 = 1.38762 it 16: L(b1) = 0.129745947851 b1 = (5.7817645731, -0.18101446876); ||b0 - b1||_1 = 1.2428 it 17: L(b1) = 0.128528515295 b1 = (6.4416421441, -0.32998499917); ||b0 - b1||_1 = 0.808848 it 18: L(b1) = 0.128270387020 b1 = (6.7460179801, -0.39851949385); ||b0 - b1||_1 = 0.37291 it 19: L(b1) = 0.128233471976 b1 = (6.8598550009, -0.42406393099); ||b0 - b1||_1 = 0.139381 it 20: L(b1) = 0.128229020225 b1 = (6.8988565082, -0.43278895803); ||b0 - b1||_1 = 0.0477265 it 21: L(b1) = 0.128228518572 b1 = (6.9117980391, -0.4356776381); ||b0 - b1||_1 = 0.0158302 it 22: L(b1) = 0.128228463365 b1 = (6.916057447, -0.43662703665); ||b0 - b1||_1 = 0.00520881 it 23: L(b1) = 0.128228457337 b1 = (6.9174582498, -0.4369390136); ||b0 - b1||_1 = 0.00171278 it 24: L(b1) = 0.128228456681 b1 = (6.9179193017, -0.43704165039); ||b0 - b1||_1 = 0.000563689 it 25: L(b1) = 0.128228456609 b1 = (6.9180711702, -0.43707545063); ||b0 - b1||_1 = 0.000185669 it 26: L(b1) = 0.128228456601 b1 = (6.9181212213, -0.43708658881); ||b0 - b1||_1 = 6.11893e-05 it 27: L(b1) = 0.128228456600 b1 = (6.9181377216, -0.43709026051); ||b0 - b1||_1 = 2.0172e-05 it 28: L(b1) = 0.128228456600 b1 = (6.9181431621, -0.43709147111); ||b0 - b1||_1 = 6.65115e-06 it 29: L(b1) = 0.128228456600 b1 = (6.9181449562, -0.43709187031); ||b0 - b1||_1 = 2.19323e-06 it 30: L(b1) = 0.128228456600 b1 = (6.9181455478, -0.43709200195); ||b0 - b1||_1 = 7.23253e-07 rwls() used 30 it.; last ||b0 - b1||_1 = 7.23253e-07, L(b1) = 0.1282284566; convergence lmrob..MM..fit(*, obj) --> updating .. qr(x * rweights) -> rank= 2, outlierStats() step "M" -> new coef= (Intercept) log.Te 6.91815 -0.43709 Call: lmrob(formula = log.light ~ log.Te, data = starsCYG, control = lmrob.control(method = "MM", psi = "lqq", trace = 4), init = ini.14) Coefficients: (Intercept) log.Te 6.918 -0.437 > ## --> break down > ## The 10 largest residuals from the robust init. S-estim: > (i10 <- head(order(abs(residuals(ini.14)), decreasing=TRUE), 10)) [1] 34 30 20 11 7 9 18 5 40 23 > residuals(ini.14)[i10] 34 30 20 11 7 9 18 5 4.52835 4.32289 4.12835 3.96835 1.67954 1.14897 -0.79362 0.63082 40 23 0.56184 -0.55362 > ## ==> and their weights for the different psi() and their default (95% efficiency) tuning: > PSIs <- names(.Mchi.tuning.defaults) > sapply(PSIs, function(PSI) + Mwgt(residuals(ini.14)[i10], cc = .Mpsi.tuning.defaults[[PSI]], psi=PSI)) bisquare welsh ggw lqq optimal hampel 34 0.0043269 0.099963 0.097736 0.11330 0 0.19761 30 0.0220915 0.122614 0.119820 0.13379 0 0.22284 20 0.0499675 0.147479 0.144468 0.15594 0 0.24905 11 0.0798366 0.170575 0.167761 0.17644 0 0.27253 7 0.7594873 0.728475 0.839862 0.85265 1 0.80523 9 0.8833299 0.862206 0.990954 0.98769 1 1.00000 18 0.9434344 0.931709 1.000000 1.00000 1 1.00000 5 0.9640696 0.956293 1.000000 1.00000 1 1.00000 40 0.9714445 0.965170 1.000000 1.00000 1 1.00000 23 0.9722677 0.966164 1.000000 1.00000 1 1.00000 > ## All MM: > RlmST.MM <- lapply(setNames(,PSIs), function(PSI) + update(RlmST, init=ini.14, control = lmrob.control(method="MM", psi = PSI))) > cf.MM <- t(sapply(RlmST.MM, coef)) > cf.MM[order(cf.MM[,1], cf.MM[,2]),] ## only 'bisquare' and 'optimal' are robust enough (Intercept) log.Te bisquare -4.9145 2.24076 optimal -4.0565 2.04666 welsh 6.9069 -0.43326 ggw 6.9168 -0.43662 lqq 6.9181 -0.43709 hampel 6.9289 -0.43905 > showProc.time() Time (user system elapsed): 0.13 0 0.13 > > > ##=== Werner's analysis: Sensitivity curves for the most-left obs ========================================= > dd <- starsCYG > dd <- dd[order(dd[,"log.Te"]),] # ==> leverage points come first (and easier plotting) > (rr <- lmrob(log.light ~ log.Te, data = dd)) Call: lmrob(formula = log.light ~ log.Te, data = dd) \--> method = "MM" Coefficients: (Intercept) log.Te -4.97 2.25 > (rr14 <- update(rr, control = lmrob.control("KS2014"))) Call: lmrob(formula = log.light ~ log.Te, data = dd, control = lmrob.control("KS2014")) \--> method = "SMDM" Coefficients: (Intercept) log.Te 6.844 -0.423 > > dd[1,2] # 6.05 will be replaced for sensitivity curve [1] 6.05 > > leg.s <- c("default, biweight" + ,"KS14, lqq" + ,"KS14, biweight" + ,"KS14, optimal" + ,"KS14, Hampel" + ,"KS14, GGW" + ,"KS14, Welsh" + ) > nEst <- length(leg.s) # == number of estimators used below > nn <- length(y1 <- c(NA, seq(2,9, length=if(doExtras) 64 else 8))) > nCf <- length(coef(rr)) + 1 # +1: sigma > r.coef <- matrix(NA, length(y1), nEst*nCf) > t.d <- dd > oo <- options(warn = 1) > showProc.time() Time (user system elapsed): 0.03 0 0.03 > ## vary the left-most observation and fit all three > for (i in seq_along(y1)) { + cat(sprintf("i=%3d, y1[i]=%11.6g: -- ", i, y1[i])) + t.d[1,2] <- y1[i] + ## the (old) default does not converge in 4 cases + lr <- update(rr, data=t.d, control = lmrob.control(maxit=500)) ; cat(" 1") + lr14 <- update(rr14, data=t.d, control = lmrob.control("KS2014", psi="lqq") ) ; cat(" 2") + lr14b <- update(rr14, data=t.d, control = lmrob.control("KS2014", psi="biweight") ); cat(" 3") + lr14o <- update(rr14, data=t.d, control = lmrob.control("KS2014", psi="optimal" ) ); cat(" 4") + lr14h <- update(rr14, data=t.d, control = lmrob.control("KS2014", psi="hampel" ) ); cat(" 5") + lr14g <- update(rr14, data=t.d, control = lmrob.control("KS2014", psi="ggw" ) ); cat(" 6") + lr14a <- update(rr14, data=t.d, control = lmrob.control("KS2014", psi="welsh" ) ); cat(" 7") + r.coef[i,] <- c(coef(lr ), sigma(lr), + coef(lr14 ), sigma(lr14), + coef(lr14b), sigma(lr14b), + coef(lr14o), sigma(lr14o), + coef(lr14h), sigma(lr14h), + coef(lr14g), sigma(lr14g), + coef(lr14a), sigma(lr14a)) + cat("\n") + } i= 1, y1[i]= NA: -- 1 2 3 4 5 6 7 i= 2, y1[i]= 2: -- 1 2 3 4 5 6 7 i= 3, y1[i]= 3: -- 1 2 3 4 5 6 7 i= 4, y1[i]= 4: -- 1 2 3 4 5 6 7 i= 5, y1[i]= 5: -- 1 2 3 4 5 6 7 i= 6, y1[i]= 6: -- 1 2 3 4 5 6 7 i= 7, y1[i]= 7: -- 1 2 3 4 5 6 7 i= 8, y1[i]= 8: -- 1 2 3 4 5 6 7 i= 9, y1[i]= 9: -- 1 2 3 4 5 6 7 > showProc.time() Time (user system elapsed): 1.73 0.04 1.77 > options(oo) > > ## cbind(y=y.1, r.coef) > ## y1[1] = where the NA is > pMat <- function(j, main, x.legend, col = 1:8, lty=1:6, lwd = 2, ylab=NA, ...) { + stopifnot(j %in% seq_len(ncol(r.coef))) + matplot(y1, r.coef[, j], type="l", xlab = quote("varying obs." ~ ~ y[1]), + ylab=ylab, main=main, col=col, lty=lty, lwd=lwd, ...) + xx <- par("usr")[1:2]; yL <- .99* xx[1] + .01*xx[2] + matpoints(yL, r.coef[1, j, drop=FALSE], pch = 20, col=col, lwd=lwd) + abline(h = r.coef[1, j, drop=FALSE], col = col, lwd=1, lty=3) + legend(x.legend, leg.s, lty=lty, col=col, lwd=lwd, bty = "n") + abline(v = dd[1,2], col=adjustcolor("tomato", 1/4)) # true y value + } > > (jj0 <- nCf*(seq_len(nEst)-1L)) [1] 0 3 6 9 12 15 18 > op <- { + if(requireNamespace("sfsmisc", quietly=TRUE)) + sfsmisc::mult.fig(2)$old.par + else + par(mfrow = 2:1, mar = .1+ c(4,4,2,1), mgp = c(1.5, 0.6, 0)) + } > > > pMat(j = 2+jj0, main = quote("slope" ~~ hat(beta[2])), "bottomleft") > pMat(j = 3+jj0, main = quote(hat(sigma)), "topleft") > par(op) > showProc.time() Time (user system elapsed): 0.08 0.01 0.09 > ## -------------------------------- > > set.seed(47) > data(hbk) > m.hbk <- lmrob(Y ~ ., data = hbk) > summary(m.hbk) Call: lmrob(formula = Y ~ ., data = hbk) \--> method = "MM" Residuals: Min 1Q Median 3Q Max -0.9273 -0.3864 0.0532 0.7181 10.8001 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.1896 0.1167 -1.62 0.109 X1 0.0853 0.0733 1.16 0.248 X2 0.0410 0.0296 1.39 0.170 X3 -0.0537 0.0319 -1.68 0.097 . --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Robust residual standard error: 0.789 Multiple R-squared: 0.0398, Adjusted R-squared: -0.000819 Convergence in 9 IRWLS iterations Robustness weights: 10 observations c(1,2,3,4,5,6,7,8,9,10) are outliers with |weight| = 0 ( < 0.0013); 7 weights are ~= 1. The remaining 58 ones are summarized as Min. 1st Qu. Median Mean 3rd Qu. Max. 0.852 0.927 0.962 0.953 0.987 0.999 Algorithmic parameters: tuning.chi bb tuning.psi refine.tol 1.55e+00 5.00e-01 4.69e+00 1.00e-07 rel.tol scale.tol solve.tol zero.tol 1.00e-07 1.00e-10 1.00e-07 1.00e-10 eps.outlier eps.x warn.limit.reject warn.limit.meanrw 1.33e-03 6.73e-11 5.00e-01 5.00e-01 nResample max.it best.r.s k.fast.s k.max 500 50 2 1 200 maxit.scale trace.lev mts compute.rd fast.s.large.n 200 0 1000 0 2000 psi subsampling cov "bisquare" "nonsingular" ".vcov.avar1" compute.outlier.stats "SM" seed : int(0) > stopifnot(1:10 == which(rw(m.hbk) < 0.01)) > > data(heart) > summary(mhrt <- lmrob(clength ~ ., data = heart)) # -> warning 'maxit.scale=200' too small Call: lmrob(formula = clength ~ ., data = heart) \--> method = "MM" Residuals: Min 1Q Median 3Q Max -9.8824 -1.7554 -0.0902 0.8181 5.6380 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 30.303 62.617 0.48 0.64 height -0.137 2.125 -0.06 0.95 weight 0.314 0.735 0.43 0.68 Robust residual standard error: 2.59 Multiple R-squared: 0.867, Adjusted R-squared: 0.838 Convergence in 36 IRWLS iterations Robustness weights: 3 weights are ~= 1. The remaining 9 ones are 2 3 4 5 6 7 8 9 11 0.989 0.930 0.961 0.908 0.926 0.996 0.113 0.967 0.615 Algorithmic parameters: tuning.chi bb tuning.psi refine.tol 1.55e+00 5.00e-01 4.69e+00 1.00e-07 rel.tol scale.tol solve.tol zero.tol 1.00e-07 1.00e-10 1.00e-07 1.00e-10 eps.outlier eps.x warn.limit.reject warn.limit.meanrw 8.33e-03 1.70e-10 5.00e-01 5.00e-01 nResample max.it best.r.s k.fast.s k.max 500 50 2 1 200 maxit.scale trace.lev mts compute.rd fast.s.large.n 200 0 1000 0 2000 psi subsampling cov "bisquare" "nonsingular" ".vcov.avar1" compute.outlier.stats "SM" seed : int(0) Warning message: In lmrob.S(x, y, control = control) : find_scale() did not converge in 'maxit.scale' (= 200) iterations with tol=1e-10, last rel.diff=0 > stopifnot(8 == which(rw(mhrt) < 0.15), + 11 == which(0.61 < rw(mhrt) & rw(mhrt) < 0.62), + c(1:7,9:10,12) == which(rw(mhrt) > 0.90)) > > iN <- c(3,5,7,11) > heartN <- heart; heartN[iN, "clength"] <- NA > lmN <- lm (clength ~ ., data = heartN) # default na.action=na.omit > mhN <- lmrob(clength ~ ., data = heartN) # default na.action=na.omit > # ==> everything just uses the n=8 complete obs > summary(mhN) # now *does* note the 4 omitted obs. Call: lmrob(formula = clength ~ ., data = heartN) \--> method = "MM" Residuals: 1 2 4 6 8 9 10 12 0.699 -0.654 2.465 -1.460 -9.031 -0.873 0.790 0.252 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 29.549 28.825 1.03 0.35 height -0.146 0.997 -0.15 0.89 weight 0.325 0.358 0.91 0.41 Robust residual standard error: 2.37 (4 observations deleted due to missingness) Multiple R-squared: 0.947, Adjusted R-squared: 0.926 Convergence in 40 IRWLS iterations Robustness weights: 1 2 4 6 8 9 10 12 0.992 0.993 0.904 0.966 0.114 0.988 0.990 0.999 Algorithmic parameters: tuning.chi bb tuning.psi refine.tol 1.55e+00 5.00e-01 4.69e+00 1.00e-07 rel.tol scale.tol solve.tol zero.tol 1.00e-07 1.00e-10 1.00e-07 1.00e-10 eps.outlier eps.x warn.limit.reject warn.limit.meanrw 1.25e-02 1.70e-10 5.00e-01 5.00e-01 nResample max.it best.r.s k.fast.s k.max 500 50 2 1 200 maxit.scale trace.lev mts compute.rd fast.s.large.n 200 0 1000 0 2000 psi subsampling cov "bisquare" "nonsingular" ".vcov.avar1" compute.outlier.stats "SM" seed : int(0) > mhNex <- lmrob(clength ~ ., data = heartN, na.action=na.exclude) > summary(mhNex) Call: lmrob(formula = clength ~ ., data = heartN, na.action = na.exclude) \--> method = "MM" Residuals: 1 2 4 6 8 9 10 12 0.699 -0.654 2.465 -1.460 -9.031 -0.873 0.790 0.252 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 29.549 28.825 1.03 0.35 height -0.146 0.997 -0.15 0.89 weight 0.325 0.358 0.91 0.41 Robust residual standard error: 2.37 (4 observations deleted due to missingness) Multiple R-squared: 0.947, Adjusted R-squared: 0.926 Convergence in 40 IRWLS iterations Robustness weights: 1 2 4 6 8 9 10 12 0.992 0.993 0.904 0.966 0.114 0.988 0.990 0.999 Algorithmic parameters: tuning.chi bb tuning.psi refine.tol 1.55e+00 5.00e-01 4.69e+00 1.00e-07 rel.tol scale.tol solve.tol zero.tol 1.00e-07 1.00e-10 1.00e-07 1.00e-10 eps.outlier eps.x warn.limit.reject warn.limit.meanrw 1.25e-02 1.70e-10 5.00e-01 5.00e-01 nResample max.it best.r.s k.fast.s k.max 500 50 2 1 200 maxit.scale trace.lev mts compute.rd fast.s.large.n 200 0 1000 0 2000 psi subsampling cov "bisquare" "nonsingular" ".vcov.avar1" compute.outlier.stats "SM" seed : int(0) > mhNx1 <- update(mhNex, ~ . - weight) > mhNx0 <- update(mhNex, ~ 1) > stopifnot( + length(r.mNex <- resid(mhNex)) == nrow(heartN) + , + iN == which(iNAr <- is.na(r.mNex)) + , + identical(iNAr, is.na(r.mN1 <- residuals(mhNx1))) + , + identical(iNAr, is.na(r.mN0 <- residuals(mhNx0))) + ) > showProc.time() Time (user system elapsed): 0.05 0.03 0.08 > > data(stackloss) > mSL <- lmrob(stack.loss ~ ., data = stackloss) > summary(mSL) Call: lmrob(formula = stack.loss ~ ., data = stackloss) \--> method = "MM" Residuals: Min 1Q Median 3Q Max -10.5097 -1.4382 -0.0913 1.0250 7.2311 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -41.5246 5.2978 -7.84 4.8e-07 *** Air.Flow 0.9388 0.1174 7.99 3.7e-07 *** Water.Temp 0.5796 0.2630 2.20 0.042 * Acid.Conc. -0.1129 0.0699 -1.62 0.125 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Robust residual standard error: 1.91 Multiple R-squared: 0.959, Adjusted R-squared: 0.952 Convergence in 17 IRWLS iterations Robustness weights: observation 21 is an outlier with |weight| = 0 ( < 0.0048); 2 weights are ~= 1. The remaining 18 ones are summarized as Min. 1st Qu. Median Mean 3rd Qu. Max. 0.122 0.876 0.943 0.872 0.980 0.998 Algorithmic parameters: tuning.chi bb tuning.psi refine.tol 1.55e+00 5.00e-01 4.69e+00 1.00e-07 rel.tol scale.tol solve.tol zero.tol 1.00e-07 1.00e-10 1.00e-07 1.00e-10 eps.outlier eps.x warn.limit.reject warn.limit.meanrw 4.76e-03 1.69e-10 5.00e-01 5.00e-01 nResample max.it best.r.s k.fast.s k.max 500 50 2 1 200 maxit.scale trace.lev mts compute.rd fast.s.large.n 200 0 1000 0 2000 psi subsampling cov "bisquare" "nonsingular" ".vcov.avar1" compute.outlier.stats "SM" seed : int(0) > > showProc.time() Time (user system elapsed): 0.01 0 0.01 > > > proc.time() user system elapsed 2.54 0.18 2.71