R Under development (unstable) (2024-08-15 r87022 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(robustbase) > > ## Model without coefficients [ print.glmrob() tests for this ..] > > ### very simple model [with outliers] > set.seed(1) > y <- rpois(1000, lambda = 4) > > ## without outliers > m0o <- glm(y ~ 0, family = poisson, epsilon = 1e-12) > m1o <- glm(y ~ 1, family = poisson, epsilon = 1e-12) > > y[1:3] <- 99:101 # outliers > > m0 <- glm(y ~ 0, family = poisson, epsilon = 1e-12) > m1 <- glm(y ~ 1, family = poisson, epsilon = 1e-12) > > ## these both failed in version 0.1-2: > rm0 <- glmrob(y ~ 0, family = poisson, acc = 1e-12) > rm1 <- glmrob(y ~ 1, family = poisson, acc = 1e-12) > > rm0 Call: glmrob(formula = y ~ 0, family = poisson, acc = 1e-12) No coefficients Number of observations: 1000 Fitted by method 'Mqle' > rm1 Call: glmrob(formula = y ~ 1, family = poisson, acc = 1e-12) Coefficients: (Intercept) 1.391 Number of observations: 1000 Fitted by method 'Mqle' > (s0 <- summary(rm0)) Call: glmrob(formula = y ~ 0, family = poisson, acc = 1e-12) No coefficients Number of observations: 1000 Fitted by method 'Mqle' (in 0 iterations) (Dispersion parameter for poisson family taken to be 1) No deviance values available Algorithmic parameters: acc tcc 1.000e-12 1.345e+00 maxit 50 test.acc "coef" > (s1 <- summary(rm1)) Call: glmrob(formula = y ~ 1, family = poisson, acc = 1e-12) Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.39067 0.01621 85.77 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Robustness weights w.r * w.x: 791 weights are ~= 1. The remaining 209 ones are summarized as Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0278 0.6769 0.8934 0.7906 0.9039 0.9039 Number of observations: 1000 Fitted by method 'Mqle' (in 7 iterations) (Dispersion parameter for poisson family taken to be 1) No deviance values available Algorithmic parameters: acc tcc 1.000e-12 1.345e+00 maxit 50 test.acc "coef" > str(s1) List of 19 $ call : language glmrob(formula = y ~ 1, family = poisson, acc = 1e-12) $ terms :Classes 'terms', 'formula' language y ~ 1 .. ..- attr(*, "variables")= language list(y) .. ..- attr(*, "factors")= int(0) .. ..- attr(*, "term.labels")= chr(0) .. ..- attr(*, "order")= int(0) .. ..- attr(*, "intercept")= int 1 .. ..- attr(*, "response")= int 1 .. ..- attr(*, ".Environment")= .. ..- attr(*, "predvars")= language list(y) .. ..- attr(*, "dataClasses")= Named chr "numeric" .. .. ..- attr(*, "names")= chr "y" $ family :List of 13 ..$ family : chr "poisson" ..$ link : chr "log" ..$ linkfun :function (mu) ..$ linkinv :function (eta) ..$ variance :function (mu) ..$ dev.resids:function (y, mu, wt) ..$ aic :function (y, n, mu, wt, dev) ..$ mu.eta :function (eta) ..$ initialize: expression({ if (any(y < 0)) stop("negative values not allowed for the 'Poisson' family") n <- rep.int(1, nobs| __truncated__ ..$ validmu :function (mu) ..$ valideta :function (eta) ..$ simulate :function (object, nsim) ..$ dispersion: num 1 ..- attr(*, "class")= chr "family" $ iter : int 7 $ control :List of 4 ..$ acc : num 1e-12 ..$ test.acc: chr "coef" ..$ maxit : num 50 ..$ tcc : num 1.34 $ method : chr "Mqle" $ residuals : Named num [1:1000] 47.39 47.89 48.39 1.49 -1.01 ... ..- attr(*, "names")= chr [1:1000] "1" "2" "3" "4" ... $ fitted.values: Named num [1:1000] 4.02 4.02 4.02 4.02 4.02 ... ..- attr(*, "names")= chr [1:1000] "1" "2" "3" "4" ... $ w.r : num [1:1000] 0.0284 0.0281 0.0278 0.9039 1 ... $ w.x : num [1:1000] 1 1 1 1 1 1 1 1 1 1 ... $ deviance : NULL $ df.residual : NULL $ null.deviance: NULL $ df.null : NULL $ df : NULL $ aliased : Named logi FALSE ..- attr(*, "names")= chr "(Intercept)" $ coefficients : num [1, 1:4] 1.3907 0.0162 85.7719 0 ..- attr(*, "dimnames")=List of 2 .. ..$ : chr "(Intercept)" .. ..$ : chr [1:4] "Estimate" "Std. Error" "z value" "Pr(>|z|)" $ dispersion : num 1 $ cov.scaled : num [1, 1] 0.000263 ..- attr(*, "dimnames")=List of 2 .. ..$ : chr "(Intercept)" .. ..$ : chr "(Intercept)" - attr(*, "class")= chr "summary.glmrob" > stopifnot(all.equal(c(coef(s1)), + c(1.390672035557, 0.016213613600955, + 85.77187478275, 0), tolerance = 1e-13))# 32-b: 4.7e-15 > > cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons'' Time elapsed: 0.35 0.1 0.43 NA NA > > proc.time() user system elapsed 0.35 0.10 0.43