R Under development (unstable) (2023-11-28 r85645 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > require("robustbase") Loading required package: robustbase > > ##---> ./poisson-ex.R > ## ~~~~~~~~~~~~~~ for more glmrobMT() tests > > source(system.file("xtraR/ex-funs.R", package = "robustbase")) > source(system.file("xtraR/test-tools.R", package = "robustbase"))## -> showSys.time(), assert.EQ() > > if(!require("sfsmisc")) { + eaxis <- axis # so we can use eaxis() below + } Loading required package: sfsmisc Attaching package: 'sfsmisc' The following object is masked _by_ '.GlobalEnv': relErr > > > (doExtras <- robustbase:::doExtras()) [1] FALSE > > ## Explore the espRho() function: --------------------------------------------- > if(!dev.interactive(orNone=TRUE)) pdf("MT-E_rho.pdf") > E.rho <- robustbase:::espRho > lambdas <- ((1:10)/2)^2 > cws <- c(1, 1.5, 1.75, 2, 2.25, 3) > (gr <- expand.grid(lam = lambdas, cw = cws)) lam cw 1 0.25 1.00 2 1.00 1.00 3 2.25 1.00 4 4.00 1.00 5 6.25 1.00 6 9.00 1.00 7 12.25 1.00 8 16.00 1.00 9 20.25 1.00 10 25.00 1.00 11 0.25 1.50 12 1.00 1.50 13 2.25 1.50 14 4.00 1.50 15 6.25 1.50 16 9.00 1.50 17 12.25 1.50 18 16.00 1.50 19 20.25 1.50 20 25.00 1.50 21 0.25 1.75 22 1.00 1.75 23 2.25 1.75 24 4.00 1.75 25 6.25 1.75 26 9.00 1.75 27 12.25 1.75 28 16.00 1.75 29 20.25 1.75 30 25.00 1.75 31 0.25 2.00 32 1.00 2.00 33 2.25 2.00 34 4.00 2.00 35 6.25 2.00 36 9.00 2.00 37 12.25 2.00 38 16.00 2.00 39 20.25 2.00 40 25.00 2.00 41 0.25 2.25 42 1.00 2.25 43 2.25 2.25 44 4.00 2.25 45 6.25 2.25 46 9.00 2.25 47 12.25 2.25 48 16.00 2.25 49 20.25 2.25 50 25.00 2.25 51 0.25 3.00 52 1.00 3.00 53 2.25 3.00 54 4.00 3.00 55 6.25 3.00 56 9.00 3.00 57 12.25 3.00 58 16.00 3.00 59 20.25 3.00 60 25.00 3.00 > > Egr <- apply(gr, 1, function(r) { + lam <- r[["lam"]]; cw <- r[["cw"]]; sL <- sqrt(lam) + xx <- seq(lam - 2*sL, lam + 2*sL, length=17) + vapply(xx, function(X) E.rho(lam, xx=X, cw=cw), NA_real_) + }) > str(Egr)# 17 x 60 num [1:17, 1:60] 0.935 0.824 0.671 0.506 0.358 ... > mLeg <- function(pos, type="o") + legend(pos, legend=paste("lambda = ", format(lambdas, digits=2)), + lty=1:5, col=1:6, pch= c(1:9, 0, letters, LETTERS), bty="n") > matplot(Egr[, gr[,"cw"]== 1.0 ], type="o",main="c_w = 1.0" ); mLeg("bottomright") > matplot(Egr[, gr[,"cw"]== 1.5 ], type="o",main="c_w = 1.5" ); mLeg("bottomright") > matplot(Egr[, gr[,"cw"]== 1.75], type="o",main="c_w = 1.75"); mLeg("bottomright") > matplot(Egr[, gr[,"cw"]== 2.0 ], type="o",main="c_w = 2.0" ); mLeg("bottomright") > matplot(Egr[, gr[,"cw"]== 2.25], type="o",main="c_w = 2.25"); mLeg("bottomright") > matplot(Egr[, gr[,"cw"]== 3.0 ], type="o",main="c_w = 3.0" ); mLeg("bottomright") > > dev.off() null device 1 > > > ## Explore the m() function: --------------------------------------------- > if(!dev.interactive(orNone=TRUE)) pdf("MT-m_rho.pdf") > > mkM <- robustbase:::mk.m_rho # itself calling splinefun(*, "monoH.FC") > getSpline.xy <- function(splfun) { + ## Depending on the version of R, the + ## environment of splinefun() slightly changes: + stopifnot(is.function(splfun), length(e <- environment(splfun)) > 0) + if("x0" %in% ls(e)) + list(x = e$x0, y = e$y0) + else list(x = e$x, y = e$y) + } > > m21 <- mkM(2.1, recompute=TRUE)# the default 'cw = 2.1' > m16 <- mkM(1.6, recompute=TRUE) > p.m2 <- function(mrho, from = 0, to, col=2, addKnots=TRUE, pchK=4, cexK=1.5, ...) { + stopifnot(is.function(mrho)) + curve(mrho, from, to, col=col, ...) + curve(sqrt(x), add=TRUE, col=adjustcolor("gray",.5), lwd=2) + if(addKnots) points(getSpline.xy(mrho), pch=pchK, cex=cexK) + } > p.m.diff <- function(mrho, from = 0, to, col=2, addKnots=TRUE, pchK=4, cexK=1.5, ...) { + stopifnot(is.function(mrho)) + curve(mrho(x) - sqrt(x), from=from, to=to, n=512, col=col, ...) + abline(h=0,lty=3) + if(addKnots) { + xy <- getSpline.xy(mrho) + if(is.numeric(x <- xy$x)) + points(x, xy$y - sqrt(x), pch=pchK, cex=cexK) + else warning("'addKnots' not available: No knots in function's environment") + } + } > > p.m2(m21, to=10) > p.m2(m16, to=10) > p.m2(m21, to=50) > p.m2(m21, to=120, cexK=.8) > p.m.diff(m21, to=120, cex=.5)# pchK="." > p.m.diff(m16, to=120, cex=.5)# pchK="." > > mm21 <- function(.) robustbase:::mm(., m21) > environment(mm21) <- environment(m21)# <- for p.m() > p.m2(mm21, to=120, cexK=.8) > p.m.diff(mm21, to=120, cexK=.8)#-- discontinuity at 100 !! > ## TODO: ways to improve! > > ## Here: look at "larger lambda" (and more cw) > > la2 <- 5*2^seq(0, 10, by = 0.25) > c.s <- .25*c(1:10, 15, 50) > mL <- lapply(c.s, function(cc) mkM(cc, lambda = la2, recompute=TRUE)) > str(mL, max=1) # a list of functions.. List of 12 $ :function (x, deriv = 0, extrapol = c("linear", "cubic")) $ :function (x, deriv = 0, extrapol = c("linear", "cubic")) $ :function (x, deriv = 0, extrapol = c("linear", "cubic")) $ :function (x, deriv = 0, extrapol = c("linear", "cubic")) $ :function (x, deriv = 0, extrapol = c("linear", "cubic")) $ :function (x, deriv = 0, extrapol = c("linear", "cubic")) $ :function (x, deriv = 0, extrapol = c("linear", "cubic")) $ :function (x, deriv = 0, extrapol = c("linear", "cubic")) $ :function (x, deriv = 0, extrapol = c("linear", "cubic")) $ :function (x, deriv = 0, extrapol = c("linear", "cubic")) $ :function (x, deriv = 0, extrapol = c("linear", "cubic")) $ :function (x, deriv = 0, extrapol = c("linear", "cubic")) > assert.EQ(la2, getSpline.xy(mL[[1]])$x) > mmL <- sapply(mL, function(F) getSpline.xy(F)$y) > matplot(la2, mmL, type ="l") # "all the same" from very far ... > mm.d. <- mmL - sqrt(la2) > matplot(la2, mm.d., type ="l", xlab=quote(lambda)); abline(h=0, lty=3) > legend("bottom", legend= paste("cw=",c.s), col=1:6, lty=1:5, ncol = 3, bty="n") > > matplot(la2, -mm.d., type ="l", xlab=quote(lambda), log = "xy", axes=FALSE) Warning messages: 1: In xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE) : 24 y values <= 0 omitted from logarithmic plot 2: In xy.coords(x, y, xlabel, ylabel, log) : 18 y values <= 0 omitted from logarithmic plot > eaxis(1); eaxis(2) > legend("bottom", legend= paste("cw=",c.s), col=1:6, lty=1:5, ncol = 3, bty="n") > ## ok, that's the correct scale > c.s2 <- c.s [c.s >= .75] > mm.d2 <- mm.d.[, c.s >= .75] > > matplot(la2, -mm.d2, type ="l", xlab=quote(lambda), log = "xy", axes=FALSE) > eaxis(1); eaxis(2) > legend("bottomleft", legend= paste("cw=",c.s2), col=1:6, lty=1:5, ncol = 3, bty="n") > > ##-> log (sqrt(lam) - m(lam)) = a[c] - beta * log(lam) : > dd2 <- data.frame(m.d = c(mm.d2), + cw = rep(c.s2, each = length(la2)), + lambda = rep(la2, length(c.s2))) > > ## gives a pretty nice picture: > summary(fm <- lm(log(-m.d) ~ 0+factor(cw) + log(lambda), + data = dd2, subset = lambda >= 50)) Call: lm(formula = log(-m.d) ~ 0 + factor(cw) + log(lambda), data = dd2, subset = lambda >= 50) Residuals: Min 1Q Median 3Q Max -0.0302886 -0.0010435 0.0002631 0.0011345 0.0075860 Coefficients: Estimate Std. Error t value Pr(>|t|) factor(cw)0.75 -3.6132965 0.0010781 -3352 <2e-16 *** factor(cw)1 -3.1413997 0.0010781 -2914 <2e-16 *** factor(cw)1.25 -2.8260459 0.0010781 -2621 <2e-16 *** factor(cw)1.5 -2.6136508 0.0010781 -2424 <2e-16 *** factor(cw)1.75 -2.4707266 0.0010781 -2292 <2e-16 *** factor(cw)2 -2.3742377 0.0010781 -2202 <2e-16 *** factor(cw)2.25 -2.3081348 0.0010781 -2141 <2e-16 *** factor(cw)2.5 -2.2617280 0.0010781 -2098 <2e-16 *** factor(cw)3.75 -2.1576558 0.0010781 -2001 <2e-16 *** factor(cw)12.5 -2.0887257 0.0010781 -1937 <2e-16 *** log(lambda) -0.4992666 0.0001419 -3520 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.003146 on 259 degrees of freedom Multiple R-squared: 1, Adjusted R-squared: 1 F-statistic: 8.293e+07 on 11 and 259 DF, p-value: < 2.2e-16 > ##=> slope of log(lambda) = -1/2 > dd3 <- within(dd2, { ld2 <- log(-m.d) + 1/2 * log(lambda) })[dd2[,"lambda"] >= 50,] > plot(ld2 ~ cw, data = dd3, type = "b") > plot(ld2 ~ cw, data = dd3, type = "b", log="x") > coplot(ld2 ~ cw|lambda, data = dd3) > coplot(ld2 ~ cw|log(lambda), data = dd3) > coplot(ld2 ~ log10(cw) | log10(lambda), data = dd3) > > dev.off() null device 1 > ##-------------------------------------------------------- end m(.) ------------- > > > ## The simple intercept example from ./glmrob-1.R > set.seed(113) > y <- rpois(17, lambda = 4) > y[1:2] <- 99:100 # outliers > y.1 <- y > x.1 <- cbind(rep(1, length(y))) > > options("robustbase:m_rho_recompute" = TRUE)#-> recompute in any case: > showSys.time( r <- glmrob(y ~ 1, family = poisson, method = "MT", nsubm=100) )# some output Time user system elapsed Time 0.45 0.03 0.48 > str(r) List of 29 $ coefficients : Named num 1.29 ..- attr(*, "names")= chr "(Intercept)" $ initial : Named num 1.31 ..- attr(*, "names")= chr "(Intercept)" $ family :List of 13 ..$ family : chr "poisson" ..$ link : chr "log" ..$ linkfun :function (mu) ..$ linkinv :function (eta) ..$ variance :function (mu) ..$ dev.resids:function (y, mu, wt) ..$ aic :function (y, n, mu, wt, dev) ..$ mu.eta :function (eta) ..$ initialize: expression({ if (any(y < 0)) stop("negative values not allowed for the 'Poisson' family") n <- rep.int(1, nobs| __truncated__ ..$ validmu :function (mu) ..$ valideta :function (eta) ..$ simulate :function (object, nsim) ..$ dispersion: num 1 ..- attr(*, "class")= chr "family" $ coefficients : Named num 1.29 ..- attr(*, "names")= chr "(Intercept)" $ residuals : Named num [1:17] 49.936 50.46 1.756 -0.338 0.709 ... ..- attr(*, "names")= chr [1:17] "1" "2" "3" "4" ... $ fitted.values : Named num [1:17] 3.65 3.65 3.65 3.65 3.65 ... ..- attr(*, "names")= chr [1:17] "1" "2" "3" "4" ... $ linear.predictors: Named num [1:17] 1.29 1.29 1.29 1.29 1.29 ... ..- attr(*, "names")= chr [1:17] "1" "2" "3" "4" ... $ cov : num [1, 1] 0.0145 $ nsubm : num 100 $ nOksub : num 100 $ converged : logi TRUE $ iter : int 14 $ optim.counts : Named int [1:2] 14 14 ..- attr(*, "names")= chr [1:2] "function" "gradient" $ optim.control :List of 4 ..$ trace: num 0 ..$ maxit: num 200 ..$ lmm : num 9 ..$ factr: num 1e+05 $ cw : num 2.1 $ weights.on.x : chr "none" $ w.x : num [1:17] 1 1 1 1 1 1 1 1 1 1 ... $ w.r : Named num [1:17] 0 0 0.745 0.992 0.94 ... ..- attr(*, "names")= chr [1:17] "1" "2" "3" "4" ... $ model :'data.frame': 17 obs. of 1 variable: ..$ y: int [1:17] 99 100 7 3 5 3 2 5 3 5 ... ..- attr(*, "terms")=Classes 'terms', 'formula' language y ~ 1 .. .. ..- attr(*, "variables")= language list(y) .. .. ..- attr(*, "factors")= int(0) .. .. ..- attr(*, "term.labels")= chr(0) .. .. ..- attr(*, "order")= int(0) .. .. ..- attr(*, "intercept")= int 1 .. .. ..- attr(*, "response")= int 1 .. .. ..- attr(*, ".Environment")= .. .. ..- attr(*, "predvars")= language list(y) .. .. ..- attr(*, "dataClasses")= Named chr "numeric" .. .. .. ..- attr(*, "names")= chr "y" $ call : language glmrob(formula = y ~ 1, family = poisson, method = "MT", nsubm = 100) $ formula :Class 'formula' language y ~ 1 .. ..- attr(*, ".Environment")= $ terms :Classes 'terms', 'formula' language y ~ 1 .. ..- attr(*, "variables")= language list(y) .. ..- attr(*, "factors")= int(0) .. ..- attr(*, "term.labels")= chr(0) .. ..- attr(*, "order")= int(0) .. ..- attr(*, "intercept")= int 1 .. ..- attr(*, "response")= int 1 .. ..- attr(*, ".Environment")= .. ..- attr(*, "predvars")= language list(y) .. ..- attr(*, "dataClasses")= Named chr "numeric" .. .. ..- attr(*, "names")= chr "y" $ data : $ offset : NULL $ control :List of 4 ..$ cw : num 2.1 ..$ nsubm: num 100 ..$ acc : num 1e-06 ..$ maxit: num 200 $ method : chr "MT" $ prior.weights : num [1:17] 1 1 1 1 1 1 1 1 1 1 ... $ contrasts : NULL $ xlevels : NULL - attr(*, "class")= chr [1:2] "glmrob" "glm" > > ## was c(ini = 1.30833281965018, est = 1.29369680430613) > ## then c(ini = 1.30833281965018, est = 1.29369680422799) > ## c(ini = 1.30833281965018, est = 1.29369680430627) > r.64b <- c(ini = 1.30833281965018, est = 1.29369680452016) > stopifnot(r$converged) > assert.EQ(r$initial, r.64b[["ini"]], check.attributes=FALSE, tol = 1e-13)# rel.diff: 3.394.e-16 > assert.EQ(r$coefficients, r.64b[["est"]], check.attributes=FALSE, tol = 1e-09)# as long we use different optim()) > > > ## now, as the algorithm has a random start: > set.seed(7) > nSim <- if(doExtras) 20 else 2 > showSys.time(LL <- replicate(nSim, + glmrob(y ~ 1, family = poisson, method = "MT"), + simplify=FALSE)) Time user system elapsed Time 2.75 0.05 2.80 > ini <- sapply(LL, `[[`, "initial") > est <- sapply(LL, `[[`, "coefficients") > ## surprise: all the 20 initial estimators are identical: > stopifnot(diff(range(ini)) == 0, + diff(range(est)) == 0) > ## probably too accurate ... but ok, for now > assert.EQ(est[1], r.64b[["est"]], check.attributes=FALSE, tol = 1e-10)# Winbuilder needed ~ 2e-11 > assert.EQ(ini[1], r.64b[["ini"]], check.attributes=FALSE, tol = 1e-10) > > ccvv <- sapply(LL, `[[`, "cov") > stopifnot(ccvv[1] == ccvv) > assert.EQ(print(ccvv[1]), 0.0145309081924157, tol = 1e-7, giveRE=TRUE) [1] 0.01453091 Mean relative difference: 4.540059e-11 > > cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons'' Time elapsed: 5.79 0.4 6.17 NA NA > ## "Platform" info > (SysI <- Sys.info()[c("sysname", "release", "nodename", "machine")]) sysname release nodename machine "Windows" "Server x64" "CRANWIN3" "x86-64" > if(require("sfsmisc") && SysI[["sysname"]] == "Linux") + ## not on the Mac (yet) + c(SysI, MIPS=Sys.MIPS(), Sys.sizes()) else SysI sysname release nodename machine "Windows" "Server x64" "CRANWIN3" "x86-64" > > proc.time() user system elapsed 5.79 0.40 6.17