R Under development (unstable) (2023-11-28 r85645 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > #### Test special cases for covMcd() > > library(robustbase) > > ### 1) p = 1 ---------------------------------------------------- > set.seed(1) > x <- c(rnorm(50),100, 1e10) > (r1 <- covMcd(x)) Minimum Covariance Determinant (MCD) estimator approximation. Method: Univariate Fast MCD(alpha=0.5 ==> h=27); nsamp = 500; (n,k)mini = (300,5) Call: covMcd(x = x) Log(Det.): -2.13 Robust Estimate of Location: x 0.1922 Robust Estimate of Covariance: x x 0.5978 > str(r1) List of 15 $ call : language covMcd(x = x) $ nsamp : num 500 $ method : chr "Univariate Fast MCD(alpha=0.5 ==> h=27); nsamp = 500; (n,k)mini = (300,5)" $ cov : num [1, 1] 0.598 ..- attr(*, "dimnames")=List of 2 .. ..$ : chr "x" .. ..$ : chr "x" $ center : Named num 0.192 ..- attr(*, "names")= chr "x" $ n.obs : int 52 $ alpha : num 0.5 $ quan : num 27 $ raw.cov : num [1, 1] 0.839 ..- attr(*, "dimnames")=List of 2 .. ..$ : chr "x" .. ..$ : chr "x" $ raw.center: Named num 0.325 ..- attr(*, "names")= chr "x" $ crit : num -2.13 $ mcd.wt : num [1:52] 1 1 1 1 1 1 1 1 1 1 ... $ X : num [1:52, 1] -0.626 0.184 -0.836 1.595 0.33 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:52] "1" "2" "3" "4" ... .. ..$ : NULL $ raw.cnp2 : num [1:2] 6.45 1.14 $ cnp2 : num [1:2] 1.17 1.01 - attr(*, "class")= chr "mcd" > summary(r1) Minimum Covariance Determinant (MCD) estimator approximation. Method: Univariate Fast MCD(alpha=0.5 ==> h=27); nsamp = 500; (n,k)mini = (300,5) Call: covMcd(x = x) Log(Det.): -2.13 Robust Estimate of Location: x 0.1922 Robust Estimate of Covariance: x x 0.5978 Eigenvalues: [1] 0.5978 Robustness weights: 4 observations c(14,24,51,52) are outliers with |weight| = 0 ( < 0.0019); 48 weights are ~= 1. > ## with alpha = 1 > (r1.1 <- covMcd(x, alpha = 1)) Minimum Covariance Determinant (MCD) estimator approximation. Method: MCD(alpha=1 ==> h=52) alpha = 1: The minimum covariance determinant estimates based on 52 observations are equal to the classical estimates. Call: covMcd(x = x, alpha = 1) Log(Det.): 42.1 Robust Estimate of Location: x 2.059 Robust Estimate of Covariance: x x 223.9 > str(r1.1) List of 15 $ call : language covMcd(x = x, alpha = 1) $ nsamp : num 500 $ method : chr "MCD(alpha=1 ==> h=52) \nalpha = 1: The minimum covariance determinant estimates based on 52 observations \nare "| __truncated__ $ cov : num [1, 1] 224 ..- attr(*, "dimnames")=List of 2 .. ..$ : chr "x" .. ..$ : chr "x" $ center : Named num 2.06 ..- attr(*, "names")= chr "x" $ n.obs : int 52 $ alpha : num 1 $ quan : num 52 $ raw.cov : num [1, 1] 1.92e+18 ..- attr(*, "dimnames")=List of 2 .. ..$ : chr "x" .. ..$ : chr "x" $ raw.center: Named num 1.92e+08 ..- attr(*, "names")= chr "x" $ crit : num 42.1 $ mcd.wt : num [1:52] 1 1 1 1 1 1 1 1 1 1 ... $ X : num [1:52, 1] -0.626 0.184 -0.836 1.595 0.33 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:52] "1" "2" "3" "4" ... .. ..$ : NULL $ raw.cnp2 : num [1:2] 1 1 $ cnp2 : num [1:2] 1.14 1 - attr(*, "class")= chr "mcd" > summary(r1.1) Minimum Covariance Determinant (MCD) estimator approximation. Method: MCD(alpha=1 ==> h=52) alpha = 1: The minimum covariance determinant estimates based on 52 observations are equal to the classical estimates. Call: covMcd(x = x, alpha = 1) Log(Det.): 42.1 Robust Estimate of Location: x 2.059 Robust Estimate of Covariance: x x 223.9 Eigenvalues: [1] 223.9 Robustness weights: 2 observations c(51,52) are outliers with |weight| = 0 ( < 0.0019); 50 weights are ~= 1. > > ### 1b) p = 1, constant scale > (rc <- covMcd(rep(1,12))) Minimum Covariance Determinant (MCD) estimator approximation. Method: Univariate Fast MCD(alpha=0.5 ==> h=7); nsamp = 500; (n,k)mini = (300,5) Call: covMcd(x = rep(1, 12)) Initial scale 0 because more than 'h' (=7) observations are identical. Log(Det.): -Inf Robust Estimate of Location: rep(1, 12) 1 Robust Estimate of Covariance: rep(1, 12) rep(1, 12) 0 Warning message: In covMcd(rep(1, 12)) : Initial scale 0 because more than 'h' (=7) observations are identical. > str(rc) List of 16 $ call : language covMcd(x = rep(1, 12)) $ nsamp : num 500 $ method : chr "Univariate Fast MCD(alpha=0.5 ==> h=7); nsamp = 500; (n,k)mini = (300,5)" $ singularity:List of 2 ..$ kind: chr "identicalObs" ..$ q : num 7 $ cov : num [1, 1] 0 ..- attr(*, "dimnames")=List of 2 .. ..$ : chr "rep(1, 12)" .. ..$ : chr "rep(1, 12)" $ raw.cov : num [1, 1] 0 ..- attr(*, "dimnames")=List of 2 .. ..$ : chr "rep(1, 12)" .. ..$ : chr "rep(1, 12)" $ center : Named num 1 ..- attr(*, "names")= chr "rep(1, 12)" $ raw.center : Named num 1 ..- attr(*, "names")= chr "rep(1, 12)" $ n.obs : int 12 $ alpha : num 0.5 $ quan : num 7 $ crit : num -Inf $ mcd.wt : num [1:12] 1 1 1 1 1 1 1 1 1 1 ... $ X : num [1:12, 1] 1 1 1 1 1 1 1 1 1 1 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:12] "1" "2" "3" "4" ... .. ..$ : NULL $ raw.cnp2 : num [1:2] 4.97 1.41 $ cnp2 : num [1:2] 1 1 - attr(*, "class")= chr "mcd" > summary(rc) Minimum Covariance Determinant (MCD) estimator approximation. Method: Univariate Fast MCD(alpha=0.5 ==> h=7); nsamp = 500; (n,k)mini = (300,5) Call: covMcd(x = rep(1, 12)) Initial scale 0 because more than 'h' (=7) observations are identical. Log(Det.): -Inf Robust Estimate of Location: rep(1, 12) 1 Robust Estimate of Covariance: rep(1, 12) rep(1, 12) 0 Eigenvalues: [1] 0 Robustness weights: All 12 weights are ~= 1. > ## with alpha = 1 > (rc1 <- covMcd(rep(1,12), alpha = 1)) Minimum Covariance Determinant (MCD) estimator approximation. Method: MCD(alpha=1 ==> h=12) alpha = 1: The minimum covariance determinant estimates based on 12 observations are equal to the classical estimates. Call: covMcd(x = rep(1, 12), alpha = 1) The classical covariance matrix is singular. Log(Det.): -Inf Robust Estimate of Location: rep(1, 12) 1 Robust Estimate of Covariance: rep(1, 12) rep(1, 12) 0 > str(rc1) List of 16 $ call : language covMcd(x = rep(1, 12), alpha = 1) $ nsamp : num 500 $ method : chr "MCD(alpha=1 ==> h=12) \nalpha = 1: The minimum covariance determinant estimates based on 12 observations \nare "| __truncated__ $ cov : num [1, 1] 0 ..- attr(*, "dimnames")=List of 2 .. ..$ : chr "rep(1, 12)" .. ..$ : chr "rep(1, 12)" $ center : Named num 1 ..- attr(*, "names")= chr "rep(1, 12)" $ n.obs : int 12 $ singularity:List of 1 ..$ kind: chr "classical" $ alpha : num 1 $ quan : num 12 $ raw.cov : num [1, 1] 0 ..- attr(*, "dimnames")=List of 2 .. ..$ : chr "rep(1, 12)" .. ..$ : chr "rep(1, 12)" $ raw.center : Named num 1 ..- attr(*, "names")= chr "rep(1, 12)" $ crit : num -Inf $ mcd.wt : num [1:12] 1 1 1 1 1 1 1 1 1 1 ... $ X : num [1:12, 1] 1 1 1 1 1 1 1 1 1 1 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:12] "1" "2" "3" "4" ... .. ..$ : NULL $ raw.cnp2 : num [1:2] 1 1 $ cnp2 : num [1:2] 1 1 - attr(*, "class")= chr "mcd" > summary(rc1) Minimum Covariance Determinant (MCD) estimator approximation. Method: MCD(alpha=1 ==> h=12) alpha = 1: The minimum covariance determinant estimates based on 12 observations are equal to the classical estimates. Call: covMcd(x = rep(1, 12), alpha = 1) The classical covariance matrix is singular. Log(Det.): -Inf Robust Estimate of Location: rep(1, 12) 1 Robust Estimate of Covariance: rep(1, 12) rep(1, 12) 0 Eigenvalues: [1] 0 Robustness weights: All 12 weights are ~= 1. > > ### 2) constant observations { multivariate scale == 0 } ----------- > (X <- matrix(rep(2*(1:4), 12), nrow = 12, byrow = TRUE)) [,1] [,2] [,3] [,4] [1,] 2 4 6 8 [2,] 2 4 6 8 [3,] 2 4 6 8 [4,] 2 4 6 8 [5,] 2 4 6 8 [6,] 2 4 6 8 [7,] 2 4 6 8 [8,] 2 4 6 8 [9,] 2 4 6 8 [10,] 2 4 6 8 [11,] 2 4 6 8 [12,] 2 4 6 8 > (rC <- covMcd(X)) Minimum Covariance Determinant (MCD) estimator approximation. Method: Fast MCD(alpha=0.5 ==> h=8); nsamp = 500; (n,k)mini = (300,5) Call: covMcd(x = X) The covariance matrix of the data is singular. There are 12 observations (in the entire dataset of 12 obs.) lying on the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p) = 0 with (m_1, ..., m_p) the mean of these observations and coefficients a_i from the vector a <- c(1, 0, 0, 0) Log(Det.): -Inf Robust Estimate of Location: [1] 2 4 6 8 Robust Estimate of Covariance: [,1] [,2] [,3] [,4] [1,] 0 0 0 0 [2,] 0 0 0 0 [3,] 0 0 0 0 [4,] 0 0 0 0 Warning message: In covMcd(X) : The covariance matrix of the data is singular. There are 12 observations (in the entire dataset of 12 obs.) lying on the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p) = 0 with (m_1, ..., m_p) the mean of these observations and coefficients a_i from the vector a <- c(1, 0, 0, 0) > summary(rC) Minimum Covariance Determinant (MCD) estimator approximation. Method: Fast MCD(alpha=0.5 ==> h=8); nsamp = 500; (n,k)mini = (300,5) Call: covMcd(x = X) The covariance matrix of the data is singular. There are 12 observations (in the entire dataset of 12 obs.) lying on the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip - m_p) = 0 with (m_1, ..., m_p) the mean of these observations and coefficients a_i from the vector a <- c(1, 0, 0, 0) Log(Det.): -Inf Robust Estimate of Location: [1] 2 4 6 8 Robust Estimate of Covariance: [,1] [,2] [,3] [,4] [1,] 0 0 0 0 [2,] 0 0 0 0 [3,] 0 0 0 0 [4,] 0 0 0 0 Eigenvalues: [1] 0 0 0 0 Robustness weights: All 12 weights are ~= 1. > (rC1 <- covMcd(X, alpha = 1)) Minimum Covariance Determinant (MCD) estimator approximation. Method: MCD(alpha=1 ==> h=12) alpha = 1: The minimum covariance determinant estimates based on 12 observations are equal to the classical estimates. Call: covMcd(x = X, alpha = 1) The classical covariance matrix is singular. Log(Det.): -Inf Robust Estimate of Location: [1] 2 4 6 8 Robust Estimate of Covariance: [,1] [,2] [,3] [,4] [1,] 0 0 0 0 [2,] 0 0 0 0 [3,] 0 0 0 0 [4,] 0 0 0 0 > summary(rC1) Minimum Covariance Determinant (MCD) estimator approximation. Method: MCD(alpha=1 ==> h=12) alpha = 1: The minimum covariance determinant estimates based on 12 observations are equal to the classical estimates. Call: covMcd(x = X, alpha = 1) The classical covariance matrix is singular. Log(Det.): -Inf Robust Estimate of Location: [1] 2 4 6 8 Robust Estimate of Covariance: [,1] [,2] [,3] [,4] [1,] 0 0 0 0 [2,] 0 0 0 0 [3,] 0 0 0 0 [4,] 0 0 0 0 Eigenvalues: [1] 0 0 0 0 Robustness weights: All 12 weights are ~= 1. > > ### 3) alpha = 1 : classical estimates --- for general cases -------- > > > cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons'' Time elapsed: 0.37 0.12 0.43 NA NA > > proc.time() user system elapsed 0.37 0.12 0.43