test_that("check_selection_sparse", { iter = 5000 fit=roben(X, Y, E, clin, iterations = iter) sel=GxESelection(fit) expect_equal(sel$method, "Median Probability Model (MPM)") expect_equal(dim(sel$indicator), c(ncol(E)+1, ncol(X))) }) test_that("check_selection_sparse_marginal", { iter = 5000 fit=roben(X[,2], Y, E, clin, iterations = iter) sel=GxESelection(fit) expect_equal(sel$method, "Median Probability Model (MPM)") expect_equal(dim(sel$indicator), c(ncol(E)+1, 1)) }) test_that("check_selection_nonsparse", { iter = 5000 fit=roben(X, Y, E, clin, iterations = iter, sparse = FALSE) sel=GxESelection(fit, prob=0.9) expect_equal(sel$method, "90% credible interval") expect_equal(dim(sel$indicator), c(ncol(E)+1, ncol(X))) }) test_that("check_selection_nonsparse_marginal", { iter = 5000 fit=roben(X[,2], Y, E, clin=NULL, iterations = iter, sparse = FALSE) sel=GxESelection(fit, prob=0.8) expect_equal(sel$method, "80% credible interval") expect_equal(dim(sel$indicator), c(ncol(E)+1, 1)) })