# Copyright 2024-2024 Steven E. Pav. All Rights Reserved. # Author: Steven E. Pav # This file is part of rnnmf. # # rnnmf is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # rnnmf is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with rnnmf. If not, see . # env var: # nb: # see also: # todo: # changelog: # # Created: 2024.08.20 # Copyright: Steven E. Pav, 2024-2024 # Author: Steven E. Pav # Comments: Steven E. Pav # helpers # random non-negative matrix; equals zero with some probability. randmat <- function(nr,nc,min=-0.25,max=1) { matrix(pmax(0,runif(nr*nc,min=min,max=max)),nrow=nr) } # just test if everything runs... quadratic_objective <- function(Y, L, R) { sum((Y - L %*% R)^2) } context("test giqpm")#FOLDUP test_that("giqpm runs",{#FOLDUP set.seed(1234) nr <- 100 nc <- 20 LL <- randmat(nr,nc) Gmat <- t(LL) %*% LL dvec <- -runif(nc) expect_error(out0 <- giqpm(Gmat, dvec), NA) preG <- randmat(nr,nr+nc) G <- preG %*% t(preG) d <- - runif(nr) expect_error(y1 <- giqpm(G, d),NA) objective <- function(G, d, x) { as.numeric(0.5 * t(x) %*% (G %*% x) + t(x) %*% d) } # this does not converge to an actual solution! steepest_step_func <- function(gradf, ...) { return(-gradf) } expect_error(y2 <- giqpm(G, d, step_func = steepest_step_func),NA) scaled_step_func <- function(gradf, Gx, Gmat, dvec, x0, ...) { return(-gradf * abs(x0)) } expect_error(y3 <- giqpm(G, d, step_func = scaled_step_func),NA) sqrt_step_func <- function(gradf, Gx, Gmat, dvec, x0, ...) { return(-gradf * abs(sqrt(x0))) } expect_error(y4 <- giqpm(G, d, step_func = sqrt_step_func),NA) complementarity_stepfunc <- function(gradf, Gx, Gmat, dvec, x0, ...) { return(-gradf * x0) } expect_error(y5 <- giqpm(G, d, step_func = complementarity_stepfunc),NA) expect_lt(objective(G, d, y4$x), objective(G, d, y2$x)) expect_lt(objective(G, d, y1$x), objective(G, d, y4$x)) expect_lt(objective(G, d, y3$x), objective(G, d, y4$x)) expect_lt(objective(G, d, y5$x), objective(G, d, y4$x)) })#UNFOLD #UNFOLD context("test aurnmf")#FOLDUP test_that("aurnmf runs",{#FOLDUP nr <- 20 nc <- 6 dm <- 2 set.seed(1234) real_L <- randmat(nr,dm) real_R <- randmat(dm,nc) Y <- real_L %*% real_R L_0 <- randmat(nr,dm) R_0 <- randmat(dm,nc) W_0R <- diag(runif(nr)) W_0C <- diag(runif(nc)) max_iter <- 20 for (check_optimal_step in c(TRUE, FALSE)) { # without regularization expect_error(out1 <- aurnmf(Y, L_0, R_0, max_iterations=max_iter,check_optimal_step=check_optimal_step),NA) # with L1 regularization on one side expect_error(out2 <- aurnmf(Y, L_0, R_0, max_iterations=max_iter,lambda_1L=0.1,check_optimal_step=check_optimal_step),NA) # with L1 regularization on both sides expect_error(out3 <- aurnmf(Y, L_0, R_0, max_iterations=max_iter,lambda_1L=0.1,lambda_1R=0.1,check_optimal_step=check_optimal_step),NA) # with non-orthogonality penalty expect_error(out4 <- aurnmf(Y, L_0, R_0, max_iterations=max_iter,lambda_1L=0.1,lambda_1R=0.1,gamma_2L=0.1,gamma_2R=0.1,check_optimal_step=check_optimal_step),NA) # with weighting expect_error(out5 <- aurnmf(Y, L_0, R_0, W_0R=W_0R, W_0C=W_0C, max_iterations=max_iter, lambda_1L=0.1,lambda_1R=0.1,gamma_2L=0.1,gamma_2R=0.1,check_optimal_step=check_optimal_step),NA) } })#UNFOLD test_that("aurnmf callbacks",{#FOLDUP nr <- 100 nc <- 20 dm <- 4 set.seed(1234) real_L <- randmat(nr,dm) real_R <- randmat(dm,nc) Y <- real_L %*% real_R max_iterations <- 1e2L it_history <<- rep(NA_real_, max_iterations) on_iteration_end <- function(iteration, Y, L, R, ...) { it_history[iteration] <<- quadratic_objective(Y,L,R) } L_0 <- randmat(nr,dm) R_0 <- randmat(dm,nc) expect_error(out1 <- aurnmf(Y, L_0, R_0, max_iterations=max_iterations, on_iteration_end=on_iteration_end),NA) })#UNFOLD test_that("aurnmf is good",{#FOLDUP nr <- 100 nc <- 10 dm <- 2 set.seed(5678) real_L <- randmat(nr,dm) real_R <- randmat(dm,nc) Y <- real_L %*% real_R L_0 <- randmat(nr,dm) R_0 <- randmat(dm,nc) for (check_optimal_step in c(TRUE, FALSE)) { # without regularization expect_error(out1 <- aurnmf(Y, L_0, R_0, max_iterations=1e2L,check_optimal_step=check_optimal_step),NA) expect_lt(quadratic_objective(Y, out1$L, out1$R), quadratic_objective(Y, L_0, R_0)) } })#UNFOLD test_that("aurnmf runs sparse input",{#FOLDUP nr <- 20 nc <- 6 dm <- 2 set.seed(1234) real_L <- randmat(nr,dm,min=-1) real_R <- randmat(dm,nc,min=-1) Y <- as(real_L %*% real_R,"sparseMatrix") L_0 <- as(randmat(nr,dm,min=-1), "sparseMatrix") R_0 <- as(randmat(dm,nc,min=-1), "sparseMatrix") W_0R <- as(diag(runif(nr)), "sparseMatrix") W_0C <- as(diag(runif(nc)), "sparseMatrix") max_iter <- 20 for (check_optimal_step in c(TRUE, FALSE)) { # without regularization expect_error(out1 <- aurnmf(Y, L_0, R_0, max_iterations=max_iter,check_optimal_step=check_optimal_step),NA) # with L1 regularization on one side expect_error(out2 <- aurnmf(Y, L_0, R_0, max_iterations=max_iter,lambda_1L=0.1,check_optimal_step=check_optimal_step),NA) # with L1 regularization on both sides expect_error(out3 <- aurnmf(Y, L_0, R_0, max_iterations=max_iter,lambda_1L=0.1,lambda_1R=0.1,check_optimal_step=check_optimal_step),NA) # with non-orthogonality penalty expect_error(out4 <- aurnmf(Y, L_0, R_0, max_iterations=max_iter,lambda_1L=0.1,lambda_1R=0.1,gamma_2L=0.1,gamma_2R=0.1,check_optimal_step=check_optimal_step),NA) # with weighting expect_error(out5 <- aurnmf(Y, L_0, R_0, W_0R=W_0R, W_0C=W_0C, max_iterations=max_iter, lambda_1L=0.1,lambda_1R=0.1,gamma_2L=0.1,gamma_2R=0.1,check_optimal_step=check_optimal_step),NA) } })#UNFOLD #UNFOLD context("test murnmf")#FOLDUP test_that("murnmf runs",{#FOLDUP nr <- 100 nc <- 20 dm <- 4 set.seed(1234) real_L <- randmat(nr,dm) real_R <- randmat(dm,nc) Y <- real_L %*% real_R # without regularization objective <- function(Y, L, R) { sum((Y - L %*% R)^2) } max_iter <- 100 L_0 <- randmat(nr,dm) R_0 <- randmat(dm,nc) expect_error(out1 <- murnmf(Y, L_0, R_0, max_iterations=max_iter),NA) # with L1 regularization on one side expect_error(out2 <- murnmf(Y, L_0, R_0, max_iterations=max_iter,lambda_1L=0.1),NA) # with L1 regularization on both sides expect_error(out3 <- murnmf(Y, L_0, R_0, max_iterations=max_iter,lambda_1L=0.1,lambda_1R=0.1),NA) # with non-orthogonality penalty expect_error(out4 <- murnmf(Y, L_0, R_0, max_iterations=max_iter,lambda_1L=0.1,lambda_1R=0.1,gamma_2L=0.1,gamma_2R=0.1),NA) })#UNFOLD test_that("murnmf is good",{#FOLDUP nr <- 100 nc <- 10 dm <- 2 set.seed(5678) real_L <- randmat(nr,dm) real_R <- randmat(dm,nc) Y <- real_L %*% real_R L_0 <- randmat(nr,dm) R_0 <- randmat(dm,nc) # without regularization out1 <- murnmf(Y, L_0, R_0, max_iterations=1e2L) expect_error(out1 <- murnmf(Y, L_0, R_0, max_iterations=1e2L),NA) expect_lt(quadratic_objective(Y, out1$L, out1$R), quadratic_objective(Y, L_0, R_0)) })#UNFOLD #UNFOLD context("test gaurnmf")#FOLDUP test_that("gaurnmf runs",{#FOLDUP nr <- 20 nc <- 6 dm <- 2 set.seed(1234) real_L <- randmat(nr,dm) real_R <- randmat(dm,nc) Y <- real_L %*% real_R L_0 <- randmat(nr,dm) R_0 <- randmat(dm,nc) # without regularization expect_error(out1 <- gaurnmf(Y, L_0, R_0, max_iterations=1e2L,check_optimal_step=FALSE),NA) # with L1 regularizations W_1L <- randmat(nrow(L_0), ncol(L_0)) W_1R <- randmat(nrow(R_0), ncol(R_0)) expect_error(out2 <- gaurnmf(Y, L_0, R_0, W_1L=W_1L, W_1R=W_1R, max_iterations=5e1L,check_optimal_step=FALSE),NA) expect_error(out2 <- gaurnmf(Y, L_0, R_0, W_1L=W_1L, W_1R=0, max_iterations=5e1L,check_optimal_step=FALSE),NA) expect_error(out2 <- gaurnmf(Y, L_0, R_0, W_1L=0, W_1R=W_1R, max_iterations=5e1L,check_optimal_step=FALSE),NA) # with L2 regularizations W_2RL <- randmat(nrow(L_0), nrow(L_0)) W_2CL <- randmat(ncol(L_0), ncol(L_0)) W_2RR <- randmat(nrow(R_0), nrow(R_0)) W_2CR <- randmat(ncol(R_0), ncol(R_0)) expect_error(out3 <- gaurnmf(Y, L_0, R_0, W_1L=0, W_1R=W_1R, W_2RL=W_2RL,W_2CL=W_2CL,W_2RR=W_2RR,W_2CR=W_2CR, max_iterations=5e1L,check_optimal_step=FALSE),NA) expect_error(out3 <- gaurnmf(Y, L_0, R_0, W_1L=0, W_1R=W_1R, W_2RL=list(W_2RL),W_2CL=list(W_2CL),W_2RR=list(W_2RR),W_2CR=list(W_2CR), max_iterations=5e1L,check_optimal_step=FALSE),NA) # with a list of L2 regularizations W_2RL1 <- randmat(nrow(L_0), nrow(L_0)) W_2CL1 <- randmat(ncol(L_0), ncol(L_0)) W_2RL2 <- randmat(nrow(L_0), nrow(L_0)) W_2CL2 <- randmat(ncol(L_0), ncol(L_0)) expect_error(out4 <- gaurnmf(Y, L_0, R_0, W_1L=0, W_1R=W_1R, W_2RL=list(W_2RL1,W_2RL2),W_2CL=list(W_2CL1,W_2CL2),W_2RR=list(W_2RR),W_2CR=list(W_2CR), max_iterations=5e1L,check_optimal_step=FALSE),NA) expect_error(out4 <- gaurnmf(Y, L_0, R_0, W_1L=0, W_1R=W_1R, W_2RL=list(W_2RL1,W_2RL2),W_2CL=list(W_2CL1,W_2CL2),W_2RR=list(W_2RR,0.2),W_2CR=list(W_2CR,0.2), max_iterations=5e1L,check_optimal_step=FALSE),NA) })#UNFOLD test_that("gaurnmf is good",{#FOLDUP nr <- 100 nc <- 10 dm <- 2 set.seed(5678) real_L <- randmat(nr,dm) real_R <- randmat(dm,nc) Y <- real_L %*% real_R L_0 <- randmat(nr,dm) R_0 <- randmat(dm,nc) for (check_optimal_step in c(TRUE, FALSE)) { # without regularization expect_error(out1 <- gaurnmf(Y, L_0, R_0, max_iterations=5e1L,check_optimal_step=check_optimal_step),NA) expect_lt(quadratic_objective(Y, out1$L, out1$R), quadratic_objective(Y, L_0, R_0)) } })#UNFOLD test_that("gaurnmf runs sparse input",{#FOLDUP nr <- 20 nc <- 6 dm <- 2 set.seed(1234) real_L <- randmat(nr,dm,min=-1) real_R <- randmat(dm,nc,min=-1) Y <- as(real_L %*% real_R,"sparseMatrix") L_0 <- as(randmat(nr,dm,min=-0.5),"sparseMatrix") R_0 <- as(randmat(dm,nc,min=-0.5),"sparseMatrix") # without regularization expect_error(out1 <- gaurnmf(Y, L_0, R_0, max_iterations=5e1L,check_optimal_step=FALSE),NA) # with L1 regularizations W_1L <- randmat(nrow(L_0), ncol(L_0)) W_1R <- randmat(nrow(R_0), ncol(R_0)) expect_error(out2 <- gaurnmf(Y, L_0, R_0, W_1L=W_1L, W_1R=W_1R, max_iterations=5e1L,check_optimal_step=FALSE),NA) expect_error(out2 <- gaurnmf(Y, L_0, R_0, W_1L=W_1L, W_1R=0, max_iterations=5e1L,check_optimal_step=FALSE),NA) expect_error(out2 <- gaurnmf(Y, L_0, R_0, W_1L=0, W_1R=W_1R, max_iterations=5e1L,check_optimal_step=FALSE),NA) # with L2 regularizations W_2RL <- randmat(nrow(L_0), nrow(L_0)) W_2CL <- randmat(ncol(L_0), ncol(L_0)) W_2RR <- randmat(nrow(R_0), nrow(R_0)) W_2CR <- randmat(ncol(R_0), ncol(R_0)) expect_error(out3 <- gaurnmf(Y, L_0, R_0, W_1L=0, W_1R=W_1R, W_2RL=W_2RL,W_2CL=W_2CL,W_2RR=W_2RR,W_2CR=W_2CR, max_iterations=5e1L,check_optimal_step=FALSE),NA) expect_error(out3 <- gaurnmf(Y, L_0, R_0, W_1L=0, W_1R=W_1R, W_2RL=list(W_2RL),W_2CL=list(W_2CL),W_2RR=list(W_2RR),W_2CR=list(W_2CR), max_iterations=5e1L,check_optimal_step=FALSE),NA) # with a list of L2 regularizations W_2RL1 <- randmat(nrow(L_0), nrow(L_0)) W_2CL1 <- randmat(ncol(L_0), ncol(L_0)) W_2RL2 <- randmat(nrow(L_0), nrow(L_0)) W_2CL2 <- randmat(ncol(L_0), ncol(L_0)) expect_error(out4 <- gaurnmf(Y, L_0, R_0, W_1L=0, W_1R=W_1R, W_2RL=list(W_2RL1,W_2RL2),W_2CL=list(W_2CL1,W_2CL2),W_2RR=list(W_2RR),W_2CR=list(W_2CR), max_iterations=5e1L,check_optimal_step=FALSE),NA) expect_error(out4 <- gaurnmf(Y, L_0, R_0, W_1L=0, W_1R=W_1R, W_2RL=list(W_2RL1,W_2RL2),W_2CL=list(W_2CL1,W_2CL2),W_2RR=list(W_2RR,0.2),W_2CR=list(W_2CR,0.2), max_iterations=5e1L,check_optimal_step=FALSE),NA) })#UNFOLD #UNFOLD #for vim modeline: (do not edit) # vim:ts=2:sw=2:tw=79:fdm=marker:fmr=FOLDUP,UNFOLD:cms=#%s:syn=r:ft=r:ai:si:cin:nu:fo=croql:cino=p0t0c5(0: