R Under development (unstable) (2024-08-17 r87027 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(rmcfs)
Loading required package: rJava

  #######################
  # rmcfs version 1.3.6 #
  #######################
  If used please cite the following paper: 
  M. Draminski, J. Koronacki (2018), 
  rmcfs: An R Package for Monte Carlo Feature Selection and Interdependency Discovery,
  Journal of Statistical Software, vol 85(12), 1-28, doi:10.18637/jss.v085.i12.
> test_check("rmcfs")
          X1         X2         X3         X4         X5         X6         X7
1  0.2917485 0.05007404 0.63722513 0.81284287 0.24768797 0.10302293 0.42749840
2  0.5093811 0.73081669 0.87650853 0.55987782 0.70211720 0.04760038 0.44939897
3  0.2447372 0.32487502 0.39269819 0.47413384 0.33249650 0.24936386 0.97692750
4  0.4719058 0.22835946 0.03222088 0.37995215 0.39201457 0.31186902 0.04527567
5  0.9985390 0.73319132 0.51511243 0.02804263 0.42547346 0.57599450 0.94067911
6  0.1561214 0.35289464 0.15437972 0.96770362 0.09978626 0.29131655 0.88521533
7  0.2748429 0.13611602 0.45229359 0.43218403 0.97692007 0.86964367 0.89450875
8  0.9001874 0.07358815 0.55434004 0.36547454 0.45782693 0.68718863 0.93914107
9  0.6887313 0.41446280 0.47208878 0.79889817 0.62377673 0.57009568 0.31589888
10 0.9346415 0.28162283 0.03732576 0.89862017 0.07954690 0.54044162 0.36858871
           X8         X9         X10
1  0.29601284 0.65794311 0.302052374
2  0.08734771 0.01663852 0.244205297
3  0.87093554 0.70830950 0.591712025
4  0.35389467 0.68097155 0.772607348
5  0.90273537 0.27080171 0.393339856
6  0.57123117 0.16006018 0.748494918
7  0.61079152 0.58840529 0.659639413
8  0.20231058 0.17915699 0.115445700
9  0.38494244 0.16901436 0.136330316
10 0.20096750 0.77777717 0.005234786


          X7          X8         X9       X10 A1 A2 B1 B2 C1 C2 class
60 0.2188540 0.362559234 0.81554060 0.3450043  0  0  B  B  0  0     B
61 0.3035803 0.088113909 0.99780583 0.2324606  0  0  0  0  C  C     C
62 0.7999598 0.908288863 0.47630133 0.2763702  0  0  0  0  0  0     C
63 0.5125571 0.925099193 0.95238666 0.9719202  0  0  0  0  0  0     C
64 0.9607326 0.283837598 0.76852704 0.3717665  0  0  0  0  C  C     C
65 0.1372308 0.709634187 0.82737850 0.3071373  0  0  0  0  0  0     C
66 0.9580729 0.366068508 0.01305201 0.9536664  0  0  0  0  C  C     C
67 0.7301433 0.001147732 0.19792949 0.7288264  0  0  0  0  0  0     C
68 0.1828031 0.754164543 0.07285060 0.7480717  0  0  0  0  C  C     C
69 0.4406439 0.112393832 0.93446333 0.2075628  0  0  0  0  C  C     C
70 0.6025564 0.653734100 0.69801836 0.9467070  0  0  0  0  C  C     C
class: 'data.frame' size: 70 x 17Checking input data...
Exporting params...
Exporting input data...
Running MCFS-ID...
##################################################
#####        dmLab 2.3.6 [2024.08.18]        #####
##################################################
Created by Michal Draminski [michal.draminski@ipipan.waw.pl]
http://www.ipipan.eu/staff/m.draminski/
Polish Academy of Sciences - Institute of Computer Science
##################################################

***************************************************
*** MCFS-ID Cutoff Permutation Experiment #1/3 ***
***************************************************
Loading header: 'input.adh'...
Loading data: 'input.csv'...
70 objects and 17 attributes to load... Done
MEMORY Status - free: 0.01G used: 0.52G total: 0.01G max: 0.53G
Pearson's correlation of shuffled decision: -0.2000
Nominal target detected - using J48 model
MCFS-ID param: ID-Graph is ON
MCFS-ID param: balance classes is AUTO
Classes = ["A", "B", "C"], Sizes = [40, 20, 10], classSizeRatio = 0.25, balanceValue = 1.0
Calculation of DecisionValuesTable...
Starting MCFS-ID Procedure: projectionSize(m) = 4, projections(s) = 200, splits(t) = 5
Start time: Mon Aug 19 12:02:19 CEST 2024
Running: 2 threads...
[                                                                      ]  0% Time: 00:00 ETA: --:--    
[======>                                                               ]  10% Time: 00:00 ETA: --:--    
[=============>                                                        ]  20% Time: 00:00 ETA: --:--    
[====================>                                                 ]  30% Time: 00:00 ETA: --:--    
[===========================>                                          ]  40% Time: 00:00 ETA: --:--    
[==================================>                                   ]  50% Time: 00:00 ETA: --:--    
[=========================================>                            ]  60% Time: 00:00 ETA: --:--    
[================================================>                     ]  70% Time: 00:00 ETA: --:--    
[=======================================================>              ]  80% Time: 00:00 ETA: --:--    
[==============================================================>       ]  90% Time: 00:00 ETA: --:--    
[=====================================================================>]  100% Time: 00:00 ETA: --:--    
[=====================================================================>]  100% Time: 00:00               
1000 trees built within 0.64 s.

Prediction Summary on a Random Subsample (st):
Accuracy = 51.14%
WeightedAccuracy = 32.65%

Cutoff RI (based on linear regression angle) = 0.0129476
Cutoff RI (based on k-means clustering) = 0.0129476
Cutoff RI (based on mean cutoff value) = 0.0111472
Important attributes (based on mean cutoff value) = 6

***************************************************
*** MCFS-ID Cutoff Permutation Experiment #2/3 ***
***************************************************
Loading header: 'input.adh'...
Loading data: 'input.csv'...
70 objects and 17 attributes to load... Done
MEMORY Status - free: 0.01G used: 0.51G total: 0.02G max: 0.53G
Pearson's correlation of shuffled decision: 0.0099
Nominal target detected - using J48 model
MCFS-ID param: ID-Graph is ON
MCFS-ID param: balance classes is AUTO
Classes = ["A", "B", "C"], Sizes = [40, 20, 10], classSizeRatio = 0.25, balanceValue = 1.0
Calculation of DecisionValuesTable...
Starting MCFS-ID Procedure: projectionSize(m) = 4, projections(s) = 200, splits(t) = 5
Start time: Mon Aug 19 12:02:20 CEST 2024
Running: 2 threads...
[                                                                      ]  0% Time: 00:00 ETA: --:--    
[======>                                                               ]  10% Time: 00:00 ETA: --:--    
[=============>                                                        ]  20% Time: 00:00 ETA: --:--    
[====================>                                                 ]  30% Time: 00:00 ETA: --:--    
[===========================>                                          ]  40% Time: 00:00 ETA: --:--    
[==================================>                                   ]  50% Time: 00:00 ETA: --:--    
[=========================================>                            ]  60% Time: 00:00 ETA: --:--    
[================================================>                     ]  70% Time: 00:00 ETA: --:--    
[=======================================================>              ]  80% Time: 00:00 ETA: --:--    
[==============================================================>       ]  90% Time: 00:00 ETA: --:--    
[=====================================================================>]  100% Time: 00:00 ETA: --:--    
[=====================================================================>]  100% Time: 00:00               
1000 trees built within 0.25 s.

Prediction Summary on a Random Subsample (st):
Accuracy = 49.98%
WeightedAccuracy = 33.77%

Cutoff RI (based on linear regression angle) = 0.0287323
Cutoff RI (based on k-means clustering) = 0.0256081
Cutoff RI (based on mean cutoff value) = 0.0204526
Important attributes (based on mean cutoff value) = 5

***************************************************
*** MCFS-ID Cutoff Permutation Experiment #3/3 ***
***************************************************
Loading header: 'input.adh'...
Loading data: 'input.csv'...
70 objects and 17 attributes to load... Done
MEMORY Status - free: 0.01G used: 0.51G total: 0.02G max: 0.53G
Pearson's correlation of shuffled decision: -0.0399
Nominal target detected - using J48 model
MCFS-ID param: ID-Graph is ON
MCFS-ID param: balance classes is AUTO
Classes = ["A", "B", "C"], Sizes = [40, 20, 10], classSizeRatio = 0.25, balanceValue = 1.0
Calculation of DecisionValuesTable...
Starting MCFS-ID Procedure: projectionSize(m) = 4, projections(s) = 200, splits(t) = 5
Start time: Mon Aug 19 12:02:20 CEST 2024
Running: 2 threads...
[                                                                      ]  0% Time: 00:00 ETA: --:--    
[======>                                                               ]  10% Time: 00:00 ETA: --:--    
[=============>                                                        ]  20% Time: 00:00 ETA: --:--    
[====================>                                                 ]  30% Time: 00:00 ETA: --:--    
[===========================>                                          ]  40% Time: 00:00 ETA: --:--    
[==================================>                                   ]  50% Time: 00:00 ETA: --:--    
[=========================================>                            ]  60% Time: 00:00 ETA: --:--    
[================================================>                     ]  70% Time: 00:00 ETA: --:--    
[=======================================================>              ]  80% Time: 00:00 ETA: --:--    
[==============================================================>       ]  90% Time: 00:00 ETA: --:--    
[=====================================================================>]  100% Time: 00:00 ETA: --:--    
[=====================================================================>]  100% Time: 00:00               
1000 trees built within 0.233 s.

Prediction Summary on a Random Subsample (st):
Accuracy = 51.67%
WeightedAccuracy = 34.29%

Cutoff RI (based on linear regression angle) = 0.0438692
Cutoff RI (based on k-means clustering) = 0.0360147
Cutoff RI (based on mean cutoff value) = 0.0249331
Important attributes (based on mean cutoff value) = 4

**************************
*** MCFS-ID Experiment ***
**************************
Loading header: 'input.adh'...
Loading data: 'input.csv'...
70 objects and 17 attributes to load... Done
MEMORY Status - free: 0.01G used: 0.51G total: 0.02G max: 0.53G
Nominal target detected - using J48 model
MCFS-ID param: ID-Graph is ON
MCFS-ID param: balance classes is AUTO
Classes = ["A", "B", "C"], Sizes = [40, 20, 10], classSizeRatio = 0.25, balanceValue = 1.0
Calculation of DecisionValuesTable...
Starting MCFS-ID Procedure: projectionSize(m) = 4, projections(s) = 200, splits(t) = 5
Start time: Mon Aug 19 12:02:20 CEST 2024
Running: 2 threads...
[                                                                      ]  0% Time: 00:00 ETA: --:--    
[======>                                                               ]  10% Time: 00:00 ETA: --:--    
[=============>                                                        ]  20% Time: 00:00 ETA: --:--    
[====================>                                                 ]  30% Time: 00:00 ETA: --:--    
[===========================>                                          ]  40% Time: 00:00 ETA: --:--    
[==================================>                                   ]  50% Time: 00:00 ETA: --:--    
[=========================================>                            ]  60% Time: 00:00 ETA: --:--    
[================================================>                     ]  70% Time: 00:00 ETA: --:--    
[=======================================================>              ]  80% Time: 00:00 ETA: --:--    
[==============================================================>       ]  90% Time: 00:00 ETA: --:--    
[=====================================================================>]  100% Time: 00:00 ETA: --:--    
[=====================================================================>]  100% Time: 00:00               
1000 trees built within 0.157 s.

Prediction Summary on a Random Subsample (st):
Accuracy = 79.44%
WeightedAccuracy = 68.97%

Cutoff RI (based on linear regression angle) = 0.0168928
Cutoff RI (based on k-means clustering) = 0.3882650
Cutoff RI (based on mean cutoff value) = 0.0168928
Important attributes (based on mean cutoff value) = 6
*** Calculation of cutoff RI (based on permutations) ***
Max RI (raw data) = 0.7200021
Max RI (after permutations) = [0.023476448, 0.037551068, 0.048657004]
Anderson-Darling normality test p-value = 0.6064343
Confidence Interval: 0.0052131 ; 0.0679098
Cutoff RI (based on permutations) = 0.0679098
Important attributes (based on permutations) = 6
*** Calculation of cutoff ID ***
Anderson-Darling normality test p-value = 0.5987068
Confidence Interval: 1.1080772 ; 15.0552321
Cutoff ID (based on permutations)  = 15.0552321
*** Final Important attributes (based on permutations) = 6
*** MCFS-ID Processing is done. Time: 1.5 s. ***

Reading results...
Done.
##### MCFS-ID result (s = auto, t = 5, m = auto) #####
Target feature: 'class'

Top 6 features:
 position attribute        RI
        1        A2 0.7200021
        2        A1 0.6843487
        3        B2 0.4490495
        4        B1 0.3882650
        5        C2 0.2902232
        6        C1 0.2447448

#################################
Cutoff values:
        method      minRI size    minID
 criticalAngle 0.01689289    7       NA
        kmeans 0.38826501    4       NA
  permutations 0.06790986    6 15.05523
          mean 0.01689289    6       NA

#################################
Confusion matrix obtained on randomly selected (st) datasets:
Confusion Matrix:

      A    B    C
A 13417  530  193
B  1789 4942  339
C  1446  892 1702

TPR (sensitivity/recall):

     TPR
1 94.9 %
2 69.9 %
3 42.1 %

Accuracy: 79.4 %
wAccuracy: 69 %

#################################
MCFS-ID execution time: 2 secs
         method      minRI size    minID
1 criticalAngle 0.01689289    7       NA
2        kmeans 0.38826501    4       NA
3  permutations 0.06790986    6 15.05523
4          mean 0.01689289    6       NA
[1] 6
   projection distance commonPart mAvg beta1
1          30    1.000          1    0     0
2          40    0.750          1    0     0
3          50    0.500          1    0     0
4          60    0.125          1    0     0
5          70    0.250          1    0     0
6          80    0.375          1    0     0
7          90    0.125          1    0     0
8         100    0.000          1    0     0
9         110    0.125          1    0     0
10        120    0.000          1    0     0
11        130    0.250          1    0     0
12        140    0.125          1    0     0
13        150    0.000          1    0     0
14        160    0.000          1    0     0
15        170    0.000          1    0     0
16        180    0.125          1    0     0
17        190    0.125          1    0     0
18        200    0.250          1    0     0
   position attribute projections classifiers     nodes          RI
12        1        A2          50   0.8680000 0.8680000 0.720002100
11        2        A1          52   0.8576923 0.8576923 0.684348700
14        3        B2          62   0.8645161 0.8645161 0.449049530
13        4        B1          50   0.8600000 0.8600000 0.388265000
16        5        C2          50   0.8360000 0.8360000 0.290223180
15        6        C1          49   0.7591836 0.7591836 0.244744840
4         7        X4          43   0.3441860 0.4744186 0.016892891
8         8        X8          50   0.2840000 0.4480000 0.013558985
6         9        X6          46   0.2652174 0.4086956 0.012915965
1        10        X1          52   0.3038461 0.4384615 0.012872161
3        11        X3          45   0.3555556 0.6088889 0.012565950
5        12        X5          58   0.1896552 0.2896552 0.006976671
9        13        X9          44   0.1636364 0.1909091 0.006783004
2        14        X2          52   0.1769231 0.2500000 0.005961394
7        15        X7          46   0.1304348 0.2043478 0.004842349
10       16       X10          59   0.1288136 0.2067797 0.004818176
   position edge_a edge_b    weight
1         1     B2     C2 28.105164
2         2     B2     C1 21.325325
3         3     A2     B1 16.477222
4         4     A2     B2 15.275316
5         5     A1     B1 10.628960
6         6     B1     C2 10.463650
7         7     A1     B2  7.718126
8         8     A1     C1  7.698044
9         9     B1     C1  7.210217
10       10     A1     C2  5.916451
11       11     A2     C1  4.707914
12       12     X8     X2  2.997086
13       13     X3     X2  2.993449
14       14     A2     C2  2.974209
15       15     X3    X10  2.755518
16       16     C1     X6  2.300357
17       17     B2     X6  2.233918
18       18     B1     X1  2.225656
19       19     B1     A1  2.133333
20       20     X4     X2  2.060968
21       21     C2     X4  1.931806
22       22     X6     X7  1.919075
23       23     X3     X4  1.876069
24       24     X1     X5  1.874010
25       25     X5     X3  1.864367
26       26     X3     X7  1.862037
27       27     X3     X6  1.825284
28       28     X3     X1  1.775435
29       29     X1     X3  1.724768
30       30     C1     X4  1.626060
31       31     X2     X6  1.566419
32       32     X5     X1  1.539928
33       33     X8     X7  1.515524
34       34     C2     X5  1.515325
35       35     C1     X1  1.500005
36       36     X3     X9  1.494811
37       37     X6    X10  1.457399
38       38     C1     X5  1.445549
39       39     X1    X10  1.437541
40       40     X2     X8  1.431766
41       41     X6     X5  1.430042
42       42     X4     X3  1.424474
43       43    X10     X1  1.419026
44       44     C2     X1  1.358736
45       45     C2     B2  1.356040
46       46     A2     X3  1.353772
47       47     B1     X6  1.334239
48       48     X2     X3  1.316596
49       49     C1     X8  1.307927
50       50     X1     X9  1.265500
Selected 6 nodes and 16 edges.
Selected 6 nodes and 12 edges.
[ FAIL 0 | WARN 2 | SKIP 8 | PASS 0 ]

══ Skipped tests (8) ═══════════════════════════════════════════════════════════
• On CRAN (7): 'test-io.R:7:3', 'test-man.build.idgraph.R:5:3',
  'test-man.plot.idgraph.R:5:3', 'test-mcfs.M5.R:7:3', 'test-mcfs.R:7:3',
  'test-mcfs.R:36:3', 'test-mcfs.mode2.R:7:3'
• empty test (1): 'test-man.mcfs.R:4:1'

[ FAIL 0 | WARN 2 | SKIP 8 | PASS 0 ]
> 
> proc.time()
   user  system elapsed 
  16.06    1.64    5.46