library(testthat) Sys.setenv('OMP_THREAD_LIMIT'=2) library(rlibkriging) ##library(rlibkriging, lib.loc="bindings/R/Rlibs") ##library(testthat) context("Fit: 1D") f = function(x) 1-1/2*(sin(12*x)/(1+x)+2*cos(7*x)*x^5+0.7) n <- 5 set.seed(123) X <- as.matrix(runif(n)) y = f(X) k = NULL r = NULL k = DiceKriging::km(design=X,response=y,covtype = "gauss",control = list(trace=F),nugget.estim=T,optim.method='BFGS',multistart = 20) r <- NuggetKriging(y, X, "gauss", optim = "BFGS20") l = as.list(r) # save(list=ls(),file="fit-nugget-1d.Rdata") alpha_k = k@covariance@sd2/(k@covariance@sd2+k@covariance@nugget) alpha_r = as.list(r)$sigma2/(as.list(r)$sigma2+as.list(r)$nugget) test_that(desc="Nugget / Fit: 1D / fit of alpha by DiceKriging is same that libKriging", expect_equal(alpha_k,alpha_r, tol= 1e-4)) ll_a = Vectorize(function(a) logLikelihoodFun(r,c(k@covariance@range.val,a))$logLikelihood) plot(ll_a,xlim=c(0.001,1),lwd=3) llk_a = Vectorize(function(a) DiceKriging::logLikFun(model=k,c(k@covariance@range.val,a))) curve(llk_a, add=TRUE, col='blue') for (a in seq(0.01,0.99,,21)){ envx = new.env() ll2x = logLikelihoodFun(r,c(k@covariance@range.val,a))$logLikelihood gll2x = logLikelihoodFun(r,c(k@covariance@range.val,a),return_grad = T)$logLikelihoodGrad[,2] arrows(a,ll2x,a+.1,ll2x+.1*gll2x,col='red') } abline(v=alpha_k,col='blue') abline(v=alpha_r,col='red') ll_t = Vectorize(function(x) logLikelihoodFun(r,c(x,alpha_k))$logLikelihood) plot(ll_t,xlim=c(0.001,1)) #ll = Vectorize(function(x) logLikelihoodFun(r,c(x,alpha_r))$logLikelihood) #plot(ll_,xlim=c(0.001,1)) theta_ref = optimize(ll_t,interval=c(0.001,1),maximum=T)$maximum abline(v=theta_ref,col='black') abline(v=as.list(r)$theta,col='red') abline(v=k@covariance@range.val,col='blue') test_that(desc="Nugget / Fit: 1D / fit of theta by DiceKriging is right", expect_equal(theta_ref, k@covariance@range.val, tol= 1e-3)) test_that(desc="Nugget / Fit: 1D / fit of theta by libKriging is right", expect_equal(array(theta_ref), array(as.list(r)$theta), tol= 0.01)) # see joint ll over theta & alpha # ll = function(X) {if (!is.matrix(X)) X = matrix(X,ncol=2); # apply(X,1, # function(x) { # y=-logLikelihoodFun(r,c(unlist(x)))$logLikelihood # #print(y); # y})} # x=seq(0.01,0.99,,51) # without reparam: # contour(x,x,matrix(ll(as.matrix(expand.grid(x,x))),nrow=length(x)),nlevels = 50) # abline(v=(theta_ref),col='black') # abline(v=(as.list(r)$theta),col='red') # abline(v=(k@covariance@range.val),col='blue') # abline(h=(alpha_k),col='blue') # abline(h=(alpha_r),col='red') # with reparam: # contour(log(x),-log(1-x),matrix(ll(as.matrix(expand.grid(x,x))),nrow=length(x)),nlevels = 50) # abline(v=log(theta_ref),col='black') # abline(v=log(as.list(r)$theta),col='red') # abline(v=log(k@covariance@range.val),col='blue') # abline(h=-log(1-alpha_k),col='blue') # abline(h=-log(1-alpha_r),col='red') ############################################################# context("Fit: 1D, nugget preset") f = function(x) 1-1/2*(sin(12*x)/(1+x)+2*cos(7*x)*x^5+0.7) n <- 5 set.seed(123) X <- as.matrix(runif(n)) y = f(X) nu=0.1 k = NULL r = NULL k = DiceKriging::km(design=X,response=y,covtype = "gauss",control = list(trace=F),nugget.estim=FALSE, nugget = nu,optim.method='BFGS',multistart = 20) #equivalent to NoiseKriging, not NuggetKriging: rr <- NoiseKriging(y, rep(0.1,nrow(y)), X, "gauss", optim = "BFGS20") r <- NuggetKriging(y, X, "gauss", optim = "BFGS20", parameters=list(nugget=nu, is_nugget_estim=FALSE )) l = as.list(r) # save(list=ls(),file="fit-nuggetpreset-1d.Rdata") alpha_k = k@covariance@sd2/(k@covariance@sd2+k@covariance@nugget) alpha_r = as.list(r)$sigma2/(as.list(r)$sigma2+as.list(r)$nugget) test_that(desc="Nugget / Fit: 1D / fit of alpha by DiceKriging is same that libKriging", expect_equal(alpha_k,alpha_r, tol= 1e-4)) theta=k@covariance@range.val #r$theta() ll_a = Vectorize(function(a) r$logLikelihoodFun(c(theta,a))$logLikelihood) plot(ll_a,xlim=c(0.1,1),lwd=3) llk_a = Vectorize(function(a) {s2 = nu*a/(1-a); DiceKriging::logLikFun(model=k,c(theta,s2))}) curve(llk_a, add=TRUE, col='blue',xlim=c(0.1,0.999)) for (a in seq(0.01,0.99,,21)){ ll2x = r$logLikelihoodFun(c(theta,a))$logLikelihood gll2x = r$logLikelihoodFun(c(theta,a),return_grad = T)$logLikelihoodGrad[,2] arrows(a,ll2x,a+.1,ll2x+.1*gll2x,col='red', lwd=5) envx = new.env() s2 = nu*a/(1-a) ll2x_k = DiceKriging::logLikFun(c(theta,s2),k, envir=envx) gll2x_k = DiceKriging::logLikGrad(c(theta,s2),k, envir=envx)[2] * nu/(1-a)^2 # chain rule arrows(a,ll2x_k,a+.1,ll2x_k+.1*gll2x_k,col='blue',lwd=3) ll2x = rr$logLikelihoodFun(c(theta,s2))$logLikelihood gll2x = rr$logLikelihoodFun(c(theta,s2),return_grad = T)$logLikelihoodGrad[,2]* nu/(1-a)^2 arrows(a,ll2x,a+.1,ll2x+.1*gll2x,col='green') } abline(v=alpha_k,col='blue') abline(v=alpha_r,col='red') ll_t = Vectorize(function(x) r$logLikelihoodFun(c(x,alpha_k))$logLikelihood) plot(ll_t,xlim=c(0.001,1)) llk_t = Vectorize(function(x) DiceKriging::logLikFun(model=k,c(x,alpha_k))) curve(llk_t, add=TRUE, col='blue') #ll = Vectorize(function(x) logLikelihoodFun(r,c(x,alpha_r))$logLikelihood) #plot(ll_,xlim=c(0.001,1)) theta_ref = optimize(ll_t,interval=c(0.001,1),maximum=T)$maximum abline(v=theta_ref,col='black') abline(v=as.list(r)$theta,col='red') abline(v=k@covariance@range.val,col='blue') test_that(desc="Nugget / Fit: 1D / fit of theta by DiceKriging is right", expect_equal(theta_ref, k@covariance@range.val, tol= 1e-3)) test_that(desc="Nugget / Fit: 1D / fit of theta by libKriging is right", expect_equal(array(theta_ref), array(as.list(r)$theta), tol= 0.01)) # see joint ll over theta & alpha # ll = function(X) {if (!is.matrix(X)) X = matrix(X,ncol=2); # apply(X,1, # function(x) { # y=-logLikelihoodFun(r,c(unlist(x)))$logLikelihood # #print(y); # y})} # x=seq(0.01,0.99,,51) # without reparam: # contour(x,x,matrix(ll(as.matrix(expand.grid(x,x))),nrow=length(x)),nlevels = 50) # abline(v=(theta_ref),col='black') # abline(v=(as.list(r)$theta),col='red') # abline(v=(k@covariance@range.val),col='blue') # abline(h=(alpha_k),col='blue') # abline(h=(alpha_r),col='red') # with reparam: # contour(log(x),-log(1-x),matrix(ll(as.matrix(expand.grid(x,x))),nrow=length(x)),nlevels = 50) # abline(v=log(theta_ref),col='black') # abline(v=log(as.list(r)$theta),col='red') # abline(v=log(k@covariance@range.val),col='blue') # abline(h=-log(1-alpha_k),col='blue') # abline(h=-log(1-alpha_r),col='red') ############################################################# context("Fit: 2D (Branin)") f = function(X) apply(X,1,DiceKriging::branin) n <- 15 set.seed(1234) X <- cbind(runif(n),runif(n)) y = f(X) k = NULL r = NULL k = DiceKriging::km(design=X,response=y,covtype = "gauss",control = list(trace=F),nugget.estim=T,optim.method='BFGS',multistart = 1) #rlibkriging:::optim_log(4) #rlibkriging:::optim_use_variogram_bounds_heuristic(T) #rlibkriging:::optim_set_max_iteration(100) r <- NuggetKriging(y, X, "gauss", optim = "BFGS") #plot(Vectorize(function(a) r$logLikelihoodFun(c(r$theta(),a))$logLikelihood)) #sectionview(function(ta)r$logLikelihoodFun(ta)$logLikelihood,center=c(r$theta(),r$sigma2()/(r$sigma2()+r$nugget()))) l = as.list(r) # save(list=ls(),file="fit-nugget-2d.Rdata") alpha_k = k@covariance@sd2/(k@covariance@sd2+k@covariance@nugget) alpha_r = as.list(r)$sigma2/(as.list(r)$sigma2+as.list(r)$nugget) test_that(desc="Nugget / Fit: 2D (Branin) / fit of alpha by DiceKriging is same that libKriging", expect_equal(alpha_k,alpha_r, tol= 1e-3)) ll = function(X) {if (!is.matrix(X)) X = matrix(X,ncol=2); # print(dim(X)); apply(X,1, function(x) { y=-logLikelihoodFun(r,c(unlist(x),alpha_k))$logLikelihood #print(y); y})} #DiceView::contourview(ll,dim=2,Xlim=c(0.01,2)) x=seq(0.01,2,,51) contour(x,x,matrix(ll(as.matrix(expand.grid(x,x))),nrow=length(x)),nlevels = 30) theta_ref = optim(par=matrix(c(.2,.5),ncol=2),ll,lower=c(0.01,0.01),upper=c(2,2),method="L-BFGS-B")$par points(theta_ref,col='black') points(as.list(r)$theta[1],as.list(r)$theta[2],col='red') points(k@covariance@range.val[1],k@covariance@range.val[2],col='blue') test_that(desc="Nugget / Fit: 2D (Branin) / fit of theta 2D is _quite_ the same that DiceKriging one", expect_equal(ll(array(as.list(r)$theta)), ll(k@covariance@range.val), tol=1e-1)) #lll = function(ta) r$logLikelihoodFun(ta)$logLikelihood #DiceView::sectionview(lll,vectorized=T,center=c(r$theta(),r$sigma2()/(r$sigma2()+r$nugget()))) ############################################################# context("Fit: 2D (Branin) multistart") f = function(X) apply(X,1,DiceKriging::branin) n <- 15 set.seed(1234) X <- cbind(runif(n),runif(n)) y = f(X) k = NULL r = NULL parinit = matrix(runif(10*ncol(X)),ncol=ncol(X)) k <- tryCatch( # needed to catch warning due to %dopar% usage when using multistart withCallingHandlers( { error_text <- "No error." DiceKriging::km(design=X,response=y,covtype = "gauss", parinit=parinit,control = list(trace=F),nugget.estim=T,optim.method='BFGS',multistart = 20) }, warning = function(e) { error_text <<- trimws(paste0("WARNING: ", e)) invokeRestart("muffleWarning") } ), error = function(e) { return(list(value = NA, error_text = trimws(paste0("ERROR: ", e)))) }, finally = { } ) r <- NuggetKriging(y, X, "gauss", optim = "BFGS20", parameters=list(theta=parinit)) l = as.list(r) # save(list=ls(),file="fit-nugget-multistart.Rdata") alpha_k = k@covariance@sd2/(k@covariance@sd2+k@covariance@nugget) alpha_r = as.list(r)$sigma2/(as.list(r)$sigma2+as.list(r)$nugget) test_that(desc="Nugget / Fit: 2D (Branin) multistart / fit of alpha by DiceKriging is same that libKriging", expect_equal(alpha_k,alpha_r, tol= 1e-4)) ll = function(X) {if (!is.matrix(X)) X = matrix(X,ncol=2); # print(dim(X)); apply(X,1, function(x) { # print(dim(x)) #print(matrix(unlist(x),ncol=2)); y=-logLikelihoodFun(r,c(unlist(x),alpha_k))$logLikelihood #print(y); y})} #DiceView::contourview(ll,xlim=c(0.01,2),ylim=c(0.01,2)) x=seq(0.01,2,,51) contour(x,x,matrix(ll(as.matrix(expand.grid(x,x))),nrow=length(x)),nlevels = 30) theta_ref = optim(par=matrix(c(.2,.5),ncol=2),ll,lower=c(0.01,0.01),upper=c(2,2),method="L-BFGS-B")$par points(theta_ref,col='black') points(as.list(r)$theta[1],as.list(r)$theta[2],col='red') points(k@covariance@range.val[1],k@covariance@range.val[2],col='blue') test_that(desc="Nugget / Fit: 2D (Branin) multistart / fit of theta 2D is _quite_ the same that DiceKriging one", expect_equal(ll(array(as.list(r)$theta)), ll(k@covariance@range.val), tol= 1e-1)) ################################################################################ context("Fit: 2D _not_ in [0,1]^2") # "unnormed" version of Branin: [0,1]x[0,15] -> ... branin_15 <- function (x) { x1 <- x[1] * 15 - 5 x2 <- x[2] #* 15 (x2 - 5/(4 * pi^2) * (x1^2) + 5/pi * x1 - 6)^2 + 10 * (1 - 1/(8 * pi)) * cos(x1) + 10 } f = function(X) apply(X,1,branin_15) n <- 15 set.seed(1234) X <- cbind(runif(n,0,1),runif(n,0,15)) y = f(X) k = NULL r = NULL k = DiceKriging::km(design=X,response=y,covtype = "gauss",control = list(trace=F),nugget.estim=TRUE,optim="BFGS",multistart=20)#,parinit = c(0.5,5)) r <- NuggetKriging(y, X, "gauss",, optim = "BFGS")#, parameters=list(theta=matrix(c(0.5,5),ncol=2))) l = as.list(r) # save(list=ls(),file="fit-nugget-2d-not01.Rdata") alpha_k = k@covariance@sd2/(k@covariance@sd2+k@covariance@nugget) alpha_r = as.list(r)$sigma2/(as.list(r)$sigma2+as.list(r)$nugget) test_that(desc="Nugget / Fit: 2D _not_ in [0,1]^2 / fit of alpha by DiceKriging is same that libKriging", expect_equal(alpha_k,alpha_r, tol= 1e-4)) ll_r = function(X) {if (!is.matrix(X)) X = matrix(X,ncol=2); # print(dim(X)); apply(X,1, function(x) { # print(dim(x)) #print(matrix(unlist(x),ncol=2)); -logLikelihoodFun(r,c(unlist(x),alpha_k))$logLikelihood #print(y); })} #DiceView::contourview(ll,xlim=c(0.01,2),ylim=c(0.01,2)) x1=seq(0.001,2,,51) x2=seq(0.001,30,,51) contour(x1,x2,matrix(ll_r(as.matrix(expand.grid(x1,x2))),nrow=length(x1)),nlevels = 30,col='red') points(as.list(r)$theta[1],as.list(r)$theta[2],col='red') ll_r(t(as.list(r)$theta)) ll_k = function(X) {if (!is.matrix(X)) X = matrix(X,ncol=2); apply(X,1,function(x) {-DiceKriging::logLikFun(c(x,alpha_k),k)})} contour(x1,x2,matrix(ll_k(as.matrix(expand.grid(x1,x2))),nrow=length(x1)),nlevels = 30,add=T) points(k@covariance@range.val[1],k@covariance@range.val[2]) ll_k(k@covariance@range.val) theta_ref = optim(par=matrix(c(.2,10),ncol=2),ll_r,lower=c(0.001,0.001),upper=c(2,30),method="L-BFGS-B")$par points(theta_ref,col='black') test_that(desc="Nugget / Fit: 2D _not_ in [0,1]^2 / fit of theta 2D is _quite_ the same that DiceKriging one", expect_equal(ll_r(array(as.list(r)$theta)), ll_k(k@covariance@range.val), tol=1e-1))