library(testthat) Sys.setenv('OMP_THREAD_LIMIT'=2) library(rlibkriging) ##library(rlibkriging, lib.loc="bindings/R/Rlibs") ##library(testthat) f <- function(x) { 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7) } plot(f, xlim = c(-1, 2), ylim = c(0, 1)) n <- 5 X_o <- seq(from = 0, to = 1, length.out = n) nugget = 0.01 set.seed(1234) y_o <- f(X_o) #+ rnorm(n, sd = sqrt(nugget)) points(X_o, y_o) lk <- NuggetKriging(y = matrix(y_o, ncol = 1), X = matrix(X_o, ncol = 1), kernel = "gauss", regmodel = "constant", optim = "none", #normalize = TRUE, parameters = list(theta = matrix(0.1), nugget=nugget, sigma2=0.09)) library(DiceKriging) dk <- km(response = matrix(y_o, ncol = 1), design = matrix(X_o, ncol = 1), covtype = "gauss", formula = ~1, nugget = nugget, nugget.estim=FALSE, #optim = "none", #normalize = TRUE, coef.cov = lk$theta()[1,1], coef.trend = lk$beta(), coef.var = lk$sigma2()) test_that("DiceKriging/libKriging T matrix is the same", { expect_equal(t(dk@T) , lk$T()*sqrt(lk$sigma2()+lk$nugget())) }) test_that("DiceKriging/libKriging covariance matrix is the same", { expect_equal((lk$covMat(matrix(X_o,ncol=1),matrix(X_o,ncol=1)) + diag(nugget,n)), covMatrix(dk@covariance,dk@X)$C) }) ## Predict & simulate X_n = unique(sort(c(X_o,seq(-1,2,,5)))) ## ## Check that DiceKriging and libKriging matches (at factor alpha) ## ## # DiceKriging / kmStruct.R / simulate.km : ## object = dk ## newdata = matrix(X_n, ncol = 1) ## Sigma21 <- covMat1Mat2(object@covariance, X1 = object@X, X2 = newdata, nugget.flag = FALSE) ## size n x m ## Tinv.Sigma21 <- backsolve(t(object@T), Sigma21, upper.tri = FALSE) ## ## # libKriging / NuggetKriging.cpp / simulate(...,with_nugget=TRUE) : ## alpha = lk$sigma2()/(lk$sigma2()+lk$nugget()) ## R_on = lk$covMat(object@X, newdata) / (lk$sigma2()+lk$nugget()) ## ## test_that("DiceKriging/libKriging R_on matrix is the same", { ## expect_equal(Sigma21, R_on * (lk$sigma2()+lk$nugget())) ## }) ## ## Rstar_on = backsolve(lk$T(), R_on, upper.tri = FALSE) ## ## test_that("DiceKriging/libKriging Rstar_on matrix is the same", { ## expect_equal(Rstar_on * sqrt(lk$sigma2()+lk$nugget()), Tinv.Sigma21) ## }) ## ## R_nn = lk$covMat(newdata, newdata) / (lk$sigma2()+lk$nugget()) ## diag(R_nn) = 1 ## ## ## # libK ## Sigma_nKo = R_nn - crossprod(Rstar_on, Rstar_on) ## chol(Sigma_nKo) # -> OK ## # DiceKriging ## Sigma_cond = covMatrix(object@covariance, newdata)[[1]] - t(Tinv.Sigma21) %*% Tinv.Sigma21 ## chol(Sigma_cond) # -> OK ## ## test_that("DiceKriging/libKriging Sigma_cond matrix is the same", { ## expect_equal(Sigma_nKo *(lk$sigma2()+lk$nugget()), Sigma_cond) ## }) ## ## ## # libKriging / NuggetKriging.cpp / simulate(...,with_nugget=FALSE) : ## R_on = lk$covMat(object@X, newdata) / (lk$sigma2()+lk$nugget()) ## Rstar_on = backsolve(lk$T(), R_on, upper.tri = FALSE) ## R_nn = lk$covMat(newdata, newdata) / lk$sigma2() ## diag(R_nn) = 1 ## Sigma_nKo = R_nn - crossprod(Rstar_on, Rstar_on) ## chol(Sigma_nKo) # -> ERROR dp = predict(dk, newdata = data.frame(X = X_n), type="UK", checkNames=FALSE) lines(X_n,dp$mean,col='blue') polygon(c(X_n,rev(X_n)),c(dp$mean+2*dp$sd,rev(dp$mean-2*dp$sd)),col=rgb(0,0,1,0.2),border=NA) lp = lk$predict(X_n) # libK predict lines(X_n,lp$mean,col='red') polygon(c(X_n,rev(X_n)),c(lp$mean+2*lp$stdev,rev(lp$mean-2*lp$stdev)),col=rgb(1,0,0,0.2),border=NA) ls = lk$simulate(100, 123, X_n, with_nugget=TRUE) # libK simulate for (i in 1:min(100,ncol(ls))) { lines(X_n,ls[,i],col=rgb(1,0,0,.1),lwd=4) } ds = simulate(dk, nsim = ncol(ls), newdata = data.frame(X = X_n), type="UK", checkNames=FALSE, cond=TRUE, nugget.sim = 1e-10) for (i in 1:min(100,nrow(ds))) { lines(X_n,ds[i,],col=rgb(0,0,1,.1),lwd=4) } # DiceKriging is not working for far X_n / X_o for (i in which(X_n >= 0 & X_n <= 1)) { if (dp$sd[i] > 1e-3) # otherwise means that density is ~ dirac, so don't test test_that(desc=paste0("DiceKriging simulate sample ( ~N(",mean(ds[,i]),",",sd(ds[,i]),") ) follows predictive distribution ( =N(",dp$mean[i],",",dp$sd[i],") ) at ",X_n[i]), expect_true(ks.test(ds[,i], "pnorm", mean = dp$mean[i],sd = dp$sd[i])$p.value > 0.001)) } for (i in 1:length(X_n)) { if (lp$stdev[i,] > 1e-3) # otherwise means that density is ~ dirac, so don't test test_that(desc=paste0("libKriging simulate sample ( ~N(",mean(ls[i,]),",",sd(ls[i,]),") ) follows predictive distribution ( =N(",lp$mean[i,],",",lp$stdev[i,],") ) at ",X_n[i]), expect_true(ks.test(ls[i,], "pnorm", mean = lp$mean[i,],sd = lp$stdev[i,])$p.value > 0.001)) } for (i in 1:length(X_n)) { if (dp$sd[i] > 1e-3) # otherwise means that density is ~ dirac, so don't test test_that(desc=paste0("DiceKriging/libKriging simulate samples ( ~N(",mean(ds[,i]),",",sd(ds[,i]),") / ~N(",mean(ls[i,]),",",sd(ls[i,]),") ) matching at ",X_n[i]), expect_true(ks.test(ds[,i], ls[i,])$p.value > 0.001)) }