R Under development (unstable) (2024-09-15 r87152 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > Sys.setenv('OMP_THREAD_LIMIT'=2) > library(rlibkriging) Attaching package: 'rlibkriging' The following objects are masked from 'package:base': load, save > > # f <- function(X) apply(X, 1, function(x) prod(sin((x-.5)^2))) > f <- function(X) apply(X, 1, function(x) + prod(sin(2*pi*( x * (seq(0,1,l=1+length(x))[-1])^2 ))) + ) > n <- 20 > set.seed(123) > X <- cbind(runif(n),runif(n)) > y <- f(X) > d = ncol(X) > > x=seq(0,1,,5) > contour(x,x,matrix(f(as.matrix(expand.grid(x,x))),nrow=length(x)),nlevels = 30) > points(X) > > r <- Kriging(y, X,"gauss",parameters = list(theta=matrix(runif(40),ncol=2))) > > # ll = function(X) { > # logLikelihoodFun(r,X,return_grad=F)$logLikelihood > # } > # contour(x,x,matrix(ll(as.matrix(expand.grid(x,x))),nrow=length(x)),nlevels = 30) > # gll = function(X) { > # logLikelihoodFun(r,X,return_grad=T)$logLikelihoodGrad > # } > # for (ix in 1:21) { > # for (iy in 1:21) { > # xx = c(ix/21,iy/21) > # g = gll(xx) > # arrows(xx[1],xx[2],xx[1]+g[1]/1000,xx[2]+g[2]/1000,col='grey',length=0.05) > # } > # } > > context("print") > > p = capture.output(print(r)) > > > context("logLikelihood") > > ll = function(Theta){apply(Theta,1,function(theta) logLikelihoodFun(r,theta)$logLikelihood)} > t=seq(0.01,2,,5) > contour(t,t,matrix(ll(as.matrix(expand.grid(t,t))),nrow=length(t)),nlevels = 30) > points(as.list(r)$theta[1],as.list(r)$theta[2],pch=20) > # logLikelihoodFun(r,t(as.list(r)$theta)) > > test_that("logLikelihoodFun returned", + expect_equal(names(logLikelihoodFun(r,runif(d))),c("logLikelihood"))) Test passed 😸 > test_that("logLikelihoodFun logLikelihoodGrad returned", + expect_equal(names(logLikelihoodFun(r,runif(d),return_grad=T)),c("logLikelihood","logLikelihoodGrad"))) Test passed 🎉 > test_that("logLikelihoodFun logLikelihoodGrad logLikelihoodHess returned", + expect_equal(names(logLikelihoodFun(r,runif(d),return_grad=T,return_hess=T)),c("logLikelihood","logLikelihoodGrad","logLikelihoodHess"))) Test passed 😀 > > test_that("logLikelihoodFun dim", + expect_equal(dim(logLikelihoodFun(r,rbind(runif(d),runif(d)))$logLikelihood),c(2,1))) Test passed 🌈 > test_that("logLikelihoodGrad dim", + expect_equal(dim(logLikelihoodFun(r,rbind(runif(d),runif(d)),return_grad=T)$logLikelihoodGrad),c(2,d))) Test passed 😸 > test_that("logLikelihoodHess dim", + expect_equal(dim(logLikelihoodFun(r,rbind(runif(d),runif(d)),return_grad=T,return_hess=T)$logLikelihoodHess),c(2,d,d))) Test passed 🎉 > > > context("leaveOneOut") > > loo = function(Theta){apply(Theta,1,function(theta) leaveOneOutFun(r,theta)$leaveOneOut)} > t=seq(0.01,2,,5) > contour(t,t,matrix(loo(as.matrix(expand.grid(t,t))),nrow=length(t)),nlevels = 30) > points(as.list(r)$theta[1],as.list(r)$theta[2]) > # leaveOneOutFun(r,t(as.list(r)$theta)) > > test_that("leaveOneOut returned", + expect_equal(names(leaveOneOutFun(r,runif(d))),c("leaveOneOut"))) Test passed 😸 > test_that("leaveOneOut leaveOneOutGrad returned", + expect_equal(names(leaveOneOutFun(r,runif(d),return_grad=T)),c("leaveOneOut","leaveOneOutGrad"))) Test passed 🎉 > > test_that("leaveOneOut dim", + expect_equal(dim(leaveOneOutFun(r,rbind(runif(d),runif(d)))$leaveOneOut),c(2,1))) Test passed 🎉 > test_that("leaveOneOutGrad dim", + expect_equal(dim(leaveOneOutFun(r,rbind(runif(d),runif(d)),return_grad=T)$leaveOneOutGrad),c(2,d))) Test passed 🎊 > > > context("predict") > > test_that("predict mean stdev returned", + expect_equal(names(predict(r,runif(d))),c("mean","stdev"))) Test passed 🎉 > test_that("predict mean returned", + expect_equal(names(predict(r,runif(d),return_stdev=F)),c("mean"))) Test passed 🥇 > test_that("predict mean stdev cov returned", + expect_equal(names(predict(r,runif(d),return_cov=T)),c("mean","stdev","cov"))) Test passed 😸 > > test_that("predict mean dim", + expect_equal(dim(predict(r,rbind(runif(d),runif(d)))$mean),c(2,1))) Test passed 🥳 > test_that("predict stdev dim", + expect_equal(dim(predict(r,rbind(runif(d),runif(d)))$stdev),c(2,1))) Test passed 🌈 > test_that("predict cov dim", + expect_equal(dim(predict(r,rbind(runif(d),runif(d)),return_cov=T)$cov),c(2,2))) Test passed 🎉 > > > context("simulate") > > test_that("simulate dim", + expect_equal(dim(simulate(r,x=rbind(runif(d),runif(d)))),c(2,1))) Test passed 🎉 > test_that("simulate nsim dim", + expect_equal(dim(simulate(r,x=rbind(runif(d),runif(d)),nsim=10)),c(2,10))) Test passed 😸 > > test_that("simulate mean X", + expect_equal(mean(simulate(r,nsim = 100, x=X[1,]+0.00005)),y[1],tolerance = 0.01)) Test passed 🎊 > set.seed(12345) > x = runif(d) > test_that("simulate mean", + expect_equal(mean(simulate(r,nsim = 100, x=x)),predict(r,x)$mean[1],tolerance = 0.01)) Test passed 🥳 > test_that("simulate sd", + expect_equal(sd(simulate(r,nsim = 100, x=x)),predict(r,x)$stdev[1],tolerance = 0.01)) Test passed 🌈 > > > context("update") > > set.seed(1234) > X2 = matrix(runif(d*10),ncol=d) > y2 = f(X2) > x=seq(0,1,,5) > contour(x,x,matrix(f(as.matrix(expand.grid(x,x))),nrow=length(x)),nlevels = 30) > points(X) > points(X2,col='red') > > #r20 <- Kriging(c(y,y2), rbind(X,X2),"gauss") > #ll = function(X) { > # logLikelihoodFun(r20,X,return_grad=F)$logLikelihood > #} > #contour(x,x,matrix(ll(as.matrix(expand.grid(x,x))),nrow=length(x)),nlevels = 30) > #gll = function(X) { > # logLikelihoodFun(r20,X,return_grad=T)$logLikelihoodGrad > #} > #for (ix in 1:21) { > #for (iy in 1:21) { > # xx = c(ix/21,iy/21) > # g = gll(xx) > # arrows(xx[1],xx[2],xx[1]+g[1]/1000,xx[2]+g[2]/1000,col='grey',length=0.05) > #} > #} > > > > t=seq(0.01,2,,5) > contour(t,t,matrix(ll(as.matrix(expand.grid(t,t))),nrow=length(t)),nlevels = 30) > points(as.list(r)$theta[1],as.list(r)$theta[2]) > > r2 <- Kriging(c(y,y2), rbind(X,X2),"gauss", parameters = list(theta=matrix(as.list(r)$theta,ncol=2))) > ll2 = function(Theta){apply(Theta,1,function(theta) logLikelihoodFun(r2,theta)$logLikelihood)} > contour(t,t,matrix(ll2(as.matrix(expand.grid(t,t))),nrow=length(t)),nlevels = 30,add=T,col='red') > points(as.list(r2)$theta[1],as.list(r2)$theta[2],col='red') > > p2 = capture.output(print(r2)) > > rc = r$copy() > pc = capture.output(print(rc)) > > update(object=r,y2,X2) > llu = function(Theta){apply(Theta,1,function(theta) logLikelihoodFun(r,theta)$logLikelihood)} > contour(t,t,matrix(llu(as.matrix(expand.grid(t,t))),nrow=length(t)),nlevels = 30,add=T,col='blue') > points(as.list(r)$theta[1],as.list(r)$theta[2],col='blue') > > pu = capture.output(print(r)) > > test_that("update", + expect_false(all(p == pu))) Test passed 🎉 > test_that("update almost converge", + expect_true(all(pu == p2))) Test passed 🎉 > > test_that("copy is well done", + expect_true(all(pc == p))) Test passed 🎉 > test_that("copy is detached", + expect_false(all(pc == pu))) Test passed 🌈 > > proc.time() user system elapsed 2.40 0.32 2.71