R Under development (unstable) (2024-08-23 r87049 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > Sys.setenv('OMP_THREAD_LIMIT'=2) > library(rlibkriging) Attaching package: 'rlibkriging' The following objects are masked from 'package:base': load, save > > kernel_type = function(kernel) { + if (kernel=="matern3_2") return("matern_3_2") + if (kernel=="matern5_2") return("matern_5_2") + stop(paste0("Cannot use ",kernel)) + } > kernel_type_num = function(kernel) { + if (kernel=="matern3_2") return(2) + if (kernel=="matern5_2") return(3) + stop(paste0("Cannot use ",kernel)) + } > > for (kernel in c("matern5_2","matern3_2")) { + context(paste0("Check Marginal Posterior for kernel ",kernel)) + + f = function(x) 1-1/2*(sin(12*x)/(1+x)+2*cos(7*x)*x^5+0.7) + plot(f) + n <- 5 + set.seed(123) + X <- as.matrix(runif(n)) + y = f(X) + points(X,y) + + k = RobustGaSP::rgasp(design=X,response=y,kernel_type=kernel_type(kernel)) + + lmp = function(theta) { + #cat("theta: ",theta,"\n") + lml = RobustGaSP::log_marginal_lik(param=log(1/theta),nugget=k@nugget,nugget_est=k@nugget.est, + R0=k@R0,X=k@X,zero_mean=k@zero_mean,output=k@output,kernel_type=kernel_type_num(kernel),alpha=k@alpha) + #cat(" lml: ",lml,"\n") + larp = RobustGaSP::log_approx_ref_prior(param=log(1/theta),nugget=k@nugget,nugget_est=k@nugget.est, + CL=k@CL,a=0.2,b=1/(length(y))^{1/dim(as.matrix(X))[2]}*(0.2+dim(as.matrix(X))[2])) + #cat(" larp: ",larp,"\n") + return(lml+larp) + } + + plot(Vectorize(lmp),ylab="LMP",xlab="theta",xlim=c(0.01,2),ylim=c(-5,5)) + abline(v=1/k@beta_hat) + + lmp_deriv = function(theta) { + #cat("theta: ",theta,"\n") + lml_d = RobustGaSP::log_marginal_lik_deriv(param=log(1/theta),nugget=k@nugget,nugget_est=k@nugget.est, + R0=k@R0,X=k@X,zero_mean=k@zero_mean,output=k@output,kernel_type=kernel_type_num(kernel),alpha=k@alpha) + #cat(" lml_d: ",lml_d,"\n") + larp_d = RobustGaSP::log_approx_ref_prior_deriv(param=log(1/theta),nugget=k@nugget,nugget_est=k@nugget.est, + CL=k@CL,a=0.2,b=1/(length(y))^{1/dim(as.matrix(X))[2]}*(0.2+dim(as.matrix(X))[2])) + #cat(" larp_d: ",larp_d,"\n") + return((lml_d + larp_d)* 1/theta * (-1/theta)) + } + + for (x in seq(0.01,2,,11)){ + arrows(x,lmp(x),x+.1,lmp(x)+.1*lmp_deriv(x)) + } + + #library(rlibkriging) + r <- Kriging(y, X, kernel, objective="LMP") + ## Should be equal: + #lmp(1.0); lmp_deriv(1.0); + #logMargPostFun(r,1.0,return_grad = T) + #lmp(0.1); lmp_deriv(0.1); + #logMargPostFun(r,0.1,return_grad = T) + #ll2 = function(theta) logMargPostFun(r,theta)$logMargPost + # plot(Vectorize(ll2),col='red',add=T,xlim=c(0.01,2)) # FIXME fails with "error: chol(): decomposition failed" + for (x in seq(0.01,2,,11)){ + ll2x = logMargPostFun(r,x)$logMargPost + gll2x = logMargPostFun(r,x,return_grad = T)$logMargPostGrad + arrows(x,ll2x,x+.1,ll2x+.1*gll2x,col='red') + } + + precision <- 1e-8 # the following tests should work with it, since the computations are analytical + x=.5 + test_that(desc="logMargPost is the same that RobustGaSP one", + expect_equal(logMargPostFun(r,x)$logMargPost[1],lmp(x),tolerance = precision)) + + test_that(desc="logMargPost Grad is the same that RobustGaSP one", + expect_equal(logMargPostFun(r,x,return_grad = T)$logMargPostGrad[1],lmp_deriv(x),tolerance= precision)) + } The upper bounds of the range parameters are 184.9743 The initial values of range parameters are 3.699485 Start of the optimization 1 : The number of iterations is 10 The value of the marginal posterior function is 2.497978 Optimized range parameters are 0.1921691 Optimized nugget parameter is 0 Convergence: TRUE The initial values of range parameters are 0.05223118 Start of the optimization 2 : The number of iterations is 6 The value of the marginal posterior function is 2.497978 Optimized range parameters are 0.1921691 Optimized nugget parameter is 0 Convergence: TRUE Test passed 🥳 Test passed 🥳 The upper bounds of the range parameters are 12784.39 The initial values of range parameters are 255.6879 Start of the optimization 1 : The number of iterations is 11 The value of the marginal posterior function is 2.654437 Optimized range parameters are 0.2772546 Optimized nugget parameter is 0 Convergence: TRUE The initial values of range parameters are 0.05223118 Start of the optimization 2 : The number of iterations is 7 The value of the marginal posterior function is 2.654437 Optimized range parameters are 0.2772546 Optimized nugget parameter is 0 Convergence: TRUE Test passed 🥳 Test passed 🥳 > > proc.time() user system elapsed 2.10 0.23 2.31