R Under development (unstable) (2024-08-23 r87049 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > Sys.setenv('OMP_THREAD_LIMIT'=2) > library(rlibkriging) Attaching package: 'rlibkriging' The following objects are masked from 'package:base': load, save > > ##library(rlibkriging, lib.loc="bindings/R/Rlibs") > ##library(testthat) > #rlibkriging:::linalg_set_chol_warning(TRUE) > #default_rcond_check = rlibkriging:::linalg_chol_rcond_checked() > #rlibkriging:::linalg_check_chol_rcond(FALSE) > #default_num_nugget = rlibkriging:::linalg_get_num_nugget() > #rlibkriging:::linalg_set_num_nugget(1e-15) # lowest nugget to avoid numerical inequalities bw simulates > > f <- function(x) { + 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7) + } > plot(f) > n <- 5 > X_o <- seq(from = 0, to = 1, length.out = n) > nugget = 0.01 > set.seed(1234) > y_o <- f(X_o) #+ rnorm(n, sd = sqrt(nugget)) > points(X_o, y_o,pch=16) > > lk <- NuggetKriging(y = matrix(y_o, ncol = 1), + X = matrix(X_o, ncol = 1), + kernel = "gauss", + regmodel = "linear", + optim = "none", + #normalize = TRUE, + parameters = list(theta = matrix(0.1), nugget=nugget, sigma2=0.09)) > > X_n = unique(sort(c(X_o,seq(0,1,,5)))) > > # lk_nn = Kriging(y = matrix(y_o, ncol = 1), > # X = matrix(X_o, ncol = 1), > # kernel = "gauss", > # regmodel = "linear", > # optim = "none", > # #normalize = TRUE, > # parameters = list(theta = matrix(0.1), sigma2 = 0.09)) > > ## Ckeck consistency bw predict & simulate > > lp = NULL > lp = lk$predict(X_n) # libK predict > lines(X_n,lp$mean,col='red') > polygon(c(X_n,rev(X_n)),c(lp$mean+2*lp$stdev,rev(lp$mean-2*lp$stdev)),col=rgb(1,0,0,0.2),border=NA) > > ls = NULL > ls = lk$simulate(100, 123, X_n) # libK simulate > for (i in 1:min(100,ncol(ls))) { + lines(X_n,ls[,i],col=rgb(1,0,0,.1),lwd=4) + } > > for (i in 1:length(X_n)) { + if (lp$stdev[i,] > 1e-3) # otherwise means that density is ~ dirac, so don't test + test_that(desc="simulate sample follows predictive distribution", + expect_true(ks.test(ls[i,], "pnorm", mean = lp$mean[i,],sd = lp$stdev[i,])$p.value > 0.001)) + } > > > > > ## Check consistency when update > > X_u = c(.4,.6) > y_u = f(X_u) #+ rnorm(length(X_u), sd = sqrt(nugget)) > > # new Kriging model from scratch > l2 = NuggetKriging(y = matrix(c(y_o,y_u),ncol=1), + X = matrix(c(X_o,X_u),ncol=1), + kernel = "gauss", + regmodel = "linear", + optim = "none", + parameters = list(theta = matrix(0.1), nugget=nugget, sigma2 = 0.09)) > > lu = copy(lk) > lu$update(y_u, X_u, refit=TRUE) # refit=TRUE will update beta (required to match l2) > > > ## Update, predict & simulate > > lp2 = l2$predict(X_n) > lpu = lu$predict(X_n) > > plot(f) > points(X_o,y_o) > lines(X_n,lp2$mean,col='red') > polygon(c(X_n,rev(X_n)),c(lp2$mean+2*lp2$stdev,rev(lp2$mean-2*lp2$stdev)),col=rgb(1,0,0,0.2),border=NA) > lines(X_n,lpu$mean,col='blue') > polygon(c(X_n,rev(X_n)),c(lpu$mean+2*lpu$stdev,rev(lpu$mean-2*lpu$stdev)),col=rgb(0,0,1,0.2),border=NA) > > ls2 = l2$simulate(100, 123, X_n) > lsu = lu$simulate(100, 123, X_n) > for (i in 1:100) { + lines(X_n,ls2[,i],col=rgb(1,0,0,.1),lwd=4) + lines(X_n,lsu[,i],col=rgb(0,0,1,.1),lwd=4) + } > > for (i in 1:length(X_n)) { + #test_that(desc="simulate sample follows predictive distribution", + # expect_true(ks.test(ls2[i,],lsu[i,])$p.value > 0.01)) + + # random gen is the same so we expect strict equality of samples ! + test_that(desc="simulate sample are the same", + expect_equal(ls2[i,],lsu[i,],tolerance=1e-5)) + } Test passed 🌈 Test passed 🥳 Test passed 🎉 Test passed 🥇 Test passed 🌈 > > > > ## Update simulate > > X_u = c(.4,.6) > y_u = f(X_u) + rnorm(length(X_u), sd = sqrt(nugget)) > > X_n = sort(c(X_u-1e-2,X_u+1e-2,X_n)) > > ls = lk$simulate(100, 123, X_n, with_nugget = TRUE, will_update=TRUE) > #y_u = rs[i_u,1] # force matching 1st sim > lus=NULL > lus = lk$update_simulate(y_u, X_u) > > lu = copy(lk) > lu$update(y_u, X_u, refit=TRUE) # refit=TRUE will update beta (required to match l2) > lsu=NULL > lsu = lu$simulate(100, 123, X_n, with_nugget = TRUE) > > plot(f) > points(X_o,y_o,pch=16) > for (i in 1:length(X_o)) { + lines(c(X_o[i],X_o[i]),c(y_o[i]+2*sqrt(nugget),y_o[i]-2*sqrt(nugget)),col='black',lwd=4) + } > points(X_u,y_u,col='red',pch=16) > for (i in 1:length(X_u)) { + lines(c(X_u[i],X_u[i]),c(y_u[i]+2*sqrt(nugget),y_u[i]-2*sqrt(nugget)),col='red',lwd=4) + } > for (j in 1:min(100,ncol(lus))) { + lines(X_n,ls[,j]) + lines(X_n,lus[,j],col='orange',lwd=3) + lines(X_n,lsu[,j],col='red') + } > > for (i in 1:length(X_n)) { + ds=density(ls[i,]) + dsu=density(lsu[i,]) + dus=density(lus[i,]) + polygon( + X_n[i] + ds$y/20, + ds$x, + col=rgb(0,0,0,0.2),border='black') + polygon( + X_n[i] + dsu$y/20, + dsu$x, + col=rgb(1,0.5,0,0.2),border='orange') + polygon( + X_n[i] + dus$y/20, + dus$x, + col=rgb(1,0,0,0.2),border=NA) + #test_that(desc="updated,simulated sample follows simulated,updated distribution", + # expect_true(ks.test(lus[i,],lsu[i,])$p.value > 0.01)) + } > > for (i in 1:length(X_n)) { + plot(density(ls[i,]),xlim=range(c(ls[i,],lsu[i,],lus[i,]))) + lines(density(lsu[i,]),col='orange') + lines(density(lus[i,]),col='red') + if (sd(lsu[i,])>1e-3 && sd(lus[i,])>1e-3) # otherwise means that density is ~ dirac, so don't test + test_that(desc=paste0("updated,simulated sample follows simulated,updated distribution at x=",X_n[i]," ", + mean(lus[i,]),",",sd(lus[i,])," != ",mean(lsu[i,]),",",sd(lsu[i,])), + expect_true(ks.test(lus[i,],lsu[i,])$p.value > 0.001)) # just check that it is not clearly wrong + } Test passed 🌈 Test passed 🥳 Test passed 🎊 Test passed 🎉 > > > > > > > > > ############################## 2D ######################################## > > f <- function(X) apply(X, 1, + function(x) + prod( + sin(2*pi* + ( x * (seq(0,1,l=1+length(x))[-1])^2 ) + ))) > n <- 10 > d <- 2 > > set.seed(1234) > X_o <- matrix(runif(n*d),ncol=d) #seq(from = 0, to = 1, length.out = n) > y_o <- f(X_o) + rnorm(n, sd = sqrt(nugget)) > #points(X_o, y_o) > > lkd <- NuggetKriging(y = y_o, + X = X_o, + kernel = "gauss", + regmodel = "linear", + optim = "none", + #normalize = TRUE, + parameters = list(theta = matrix(rep(0.1,d))^2, nugget=nugget, sigma2=0.1^2)) > > ## Predict & simulate > > X_n = matrix(runif(min=0,max=1,5),ncol=d) #seq(0,1,,) Warning message: In matrix(runif(min = 0, max = 1, 5), ncol = d) : data length [5] is not a sub-multiple or multiple of the number of rows [3] > > lpd = lkd$predict(X_n) # libK predict > #lines(X_n,lp$mean,col='red') > #polygon(c(X_n,rev(X_n)),c(lp$mean+2*lp$stdev,rev(lp$mean-2*lp$stdev)),col=rgb(1,0,0,0.2),border=NA) > > lsd = lkd$simulate(100, 123, X_n) # libK simulate > #for (i in 1:100) { > # lines(X_n,ls[,i],col=rgb(1,0,0,.1),lwd=4) > #} > > for (i in 1:nrow(X_n)) { + m = lpd$mean[i,] + s = lpd$stdev[i,] + if (s > 1e-2) # otherwise means that density is ~ dirac, so don't test + test_that(desc="simulate sample follows predictive distribution", + expect_true(ks.test(lsd[i,],"pnorm",mean=m,sd=s)$p.value > 0.001)) + } Test passed 😸 Test passed 🎊 Test passed 😀 > > ### Update > # > #X_u = c(.4,.6) > #y_u = f(X_u) > # > ## new Kriging model from scratch > #l2 = Kriging(y = matrix(c(y_o,y_u),ncol=1), > # X = matrix(c(X_o,X_u),ncol=1), > # kernel = "gauss", > # regmodel = "linear", > # optim = "none", > # parameters = list(theta = matrix(0.1))) > # > #lu = copy(lk) > #update(lu, y_u,X_u) > # > ### Update, predict & simulate > # > #lp2 = l2$predict(X_n) > #lpu = lu$predict(X_n) > # > #plot(f) > #points(X_o,y_o) > #lines(X_n,lp2$mean,col='red') > #polygon(c(X_n,rev(X_n)),c(lp2$mean+2*lp2$stdev,rev(lp2$mean-2*lp2$stdev)),col=rgb(1,0,0,0.2),border=NA) > #lines(X_n,lpu$mean,col='blue') > #polygon(c(X_n,rev(X_n)),c(lpu$mean+2*lpu$stdev,rev(lpu$mean-2*lpu$stdev)),col=rgb(0,0,1,0.2),border=NA) > # > #ls2 = l2$simulate(100, 123, X_n) > #lsu = lu$simulate(100, 123, X_n) > #for (i in 1:100) { > # lines(X_n,ls2[,i],col=rgb(1,0,0,.1),lwd=4) > # lines(X_n,lsu[,i],col=rgb(0,0,1,.1),lwd=4) > #} > # > #for (i in 1:length(X_n)) { > # m2 = lp2$mean[i,] > # s2 = lp2$stdev[i,] > # mu = lpu$mean[i,] > # su = lpu$stdev[i,] > # test_that(desc="simulate sample follows predictive distribution", > # expect_true(ks.test(ls2[i,] - m2,"pnorm",mean=m2,sd=s2)$p.value > 0.01)) > # test_that(desc="simulate sample follows predictive distribution", > # expect_true(ks.test(lsu[i,] - mu,"pnorm",mean=mu,sd=su)$p.value > 0.01)) > #} > # > # > # > ## Update simulate > > X_u = matrix(c(.4,.6),nrow=2,ncol=2) > y_u = f(X_u) + rnorm(nrow(X_u), sd = sqrt(nugget)) > > X_n = rbind(X_u+1e-2,X_n) # add some nugget to avoid degenerate cases > > #lk = rlibkriging:::load.NuggetKriging("/tmp/lk.json") > lsd = lkd$simulate(100, 123, X_n, with_nugget=TRUE, will_update=TRUE) > lusd = NULL > lusd = lkd$update_simulate(y_u, X_u) > > lud = copy(lkd) > lud$update(matrix(y_u,ncol=1), X_u, refit=TRUE) # refit=TRUE will update beta (required to match l2) > #lu = rlibkriging:::load.NuggetKriging("/tmp/lu.json") > lsud = NULL > lsud = lud$simulate(100, 123, X_n) > > #lk$save("/tmp/lk.json") > #lu$save("/tmp/lu.json") > > #plot(f) > #points(X_o,y_o,pch=20) > #points(X_u,y_u,col='red',pch=20) > #for (i in 1:ncol(lus)) { > # lines(X_n,lus[,i],col=rgb(1,0,0,.1),lwd=4) > # lines(X_n,lsu[,i],col=rgb(0,0,1,.1),lwd=4) > #} > # > #for (i in 1:length(X_n)) { > # dsu=density(lsu[i,]) > # dus=density(lus[i,]) > # polygon( > # X_n[i] + dsu$y/100, > # dsu$x, > # col=rgb(0,0,1,0.2),border=NA) > # polygon( > # X_n[i] + dus$y/100, > # dus$x, > # col=rgb(1,0,0,0.2),border=NA) > # #test_that(desc="updated,simulated sample follows simulated,updated distribution", > # # expect_true(ks.test(lus[i,],lsu[i,])$p.value > 0.01)) > #} > > for (i in 1:nrow(X_n)) { + plot(density(lsd[i,]),xlim=c(0,1)) + lines(density(lsud[i,]),col='orange') + lines(density(lusd[i,]),col='red') + if (sd(lsud[i,])>1e-3 && sd(lusd[i,])>1e-3) {# otherwise means that density is ~ dirac, so don't test + test_that(desc=paste0("updated,simulated sample follows simulated,updated distribution ",mean(lusd[i,]),",",sd(lusd[i,])," != ",mean(lsud[i,]),",",sd(lsud[i,])), + expect_true(ks.test(lusd[i,],lsud[i,])$p.value > 0.001)) # just check that it is not clearly wrong + } + } Test passed 🥳 Test passed 😸 Test passed 🥳 Test passed 🥇 Test passed 🎊 > > #rlibkriging:::linalg_check_chol_rcond(default_rcond_check) > #rlibkriging:::linalg_set_num_nugget(default_num_nugget) > > proc.time() user system elapsed 3.43 0.43 3.85