context("cubical error-checks") # make sure error checking is in place # appropriately increases code coverage test_that("errors are detected appropriately by cubical", { test_data <- rnorm(10 ^ 2) dim(test_data) <- rep(10, 2) # non-numeric threshold expect_error(cubical(test_data, threshold = "9999")) # dataset of type list expect_error(cubical(list(test_data))) # non-numeric matrix dataset expect_error(cubical(as.character(test_data))) # invalid numeric method expect_error(cubical(test_data, method = 2)) # invalid method class expect_error(cubical(test_data, method = "0")) skip_on_cran() # too large dataset (2-dim) test_data_large <- rnorm(1500 ^ 2) dim(test_data_large) <- rep(1500, 2) expect_error(cubical(test_data_large)) # too small dataset (2-dim) test_data_small <- numeric() dim(test_data_small) <- c(0, 0) expect_error(cubical(test_data_small)) # too large dataset (3-dim) test_data_large <- rnorm(515 * 10 * 10) dim(test_data_large) <- c(515, 10, 10) expect_error(cubical(test_data_large)) # too small dataset (3-dim) test_data_small <- numeric() dim(test_data_small) <- c(0, 0) expect_error(cubical(test_data_small)) # too large dataset (4-dim) test_data_large <- rnorm(75 * 10 * 10 * 10) dim(test_data_large) <- c(75, 10, 10, 10) expect_error(cubical(test_data_large)) # too small dataset (4-dim) test_data_small <- numeric() dim(test_data_small) <- c(0, 0) expect_error(cubical(test_data_small)) })