context("dict") test_that("Python dictionaries can be created", { skip_if_no_python() expect_is(dict(), "python.builtin.dict") }) test_that("Python dictionaries can be created with py_dict", { skip_if_no_python() expect_is(py_dict(list("a", "b", "c"), list(1,2,3)), "python.builtin.dict") }) test_that("Python dictionaries can use python objects as keys", { skip_if_no_python() py <- import_builtins(convert = FALSE) key <- py$int(42) expect_error(dict(key = "foo"), NA) expect_is(py_dict(list(key), list("foo")), "python.builtin.dict") }) test_that("Python dictionaries have numeric keys", { skip_if_no_python() expect_error(dict(`42` = "foo"), NA) }) test_that("Python dictionaries can include numbers in their keys", { skip_if_no_python() expect_error(dict(foo42 = "foo"), NA) }) test_that("Dictionary items can be get / set / removed with py_item APIs", { skip_if_no_python() d <- dict() one <- r_to_py(1) py_set_item(d, "apple", one) expect_equal(py_get_item(d, "apple"), one) py_del_item(d, "apple") expect_error(py_get_item(d, "apple")) expect_identical(py_get_item(d, "apple", silent = TRUE), NULL) }) test_that("$, [ operators behave as expected", { skip_if_no_python() d <- dict(items = 1, apple = 42) expect_true(is.function(d$items)) expect_true(py_bool(d['items'] == 1)) expect_true(py_bool(d$apple == 42)) expect_true(py_bool(d['apple'] == 42)) }) test_that("ordered dictionaries with non-string keys can be converted", { skip_if_no_python() builtins <- import_builtins(convert = FALSE) collections <- import("collections", convert = FALSE) t <- builtins$tuple(list(42)) od <- collections$OrderedDict(list()) od[[t]] <- 42 result <- py_to_r(od) expect_identical(result, list("(42.0,)" = 42)) }) test_that("py_to_r(dict) converts recursively, #1221", { skip_if_no_python() skip_if_no_numpy() skip_if_no_pandas() py <- py_run_string(' import numpy as np import pandas as pd np.random.seed(6012022) tools = ["sas", "stata", "spss", "python", "r", "julia"] random_df = pd.DataFrame({ "tool": np.random.choice(tools, 500), "int": np.random.randint(1, 15, 500), "num": np.random.randn(500), "bool": np.random.choice([True, False], 500), "date": np.random.choice(pd.date_range("2020-01-01", "2022-06-01"), 500) }) # LIST OF DATA FRAMES df_list = [df for i, df in random_df.groupby(["tool"])] # DICT OF DATA FRAMES # begining in Pandas 2.0, .groupby() returns the key as tuple(str,), previously, as a str. df_dict = {i[0] if isinstance(i, tuple) else i: df for i, df in random_df.groupby(["tool"])} ', local = TRUE) rdf_list <- py$df_list lapply(rdf_list, expect_s3_class, "data.frame") rdf_dict <- py$df_dict lapply(rdf_list, expect_s3_class, "data.frame") for (i in seq_along(rdf_dict)) { attr(rdf_dict[[i]], "pandas.index") <- NULL attr(rdf_list[[i]], "pandas.index") <- NULL } expect_identical(rdf_list, unname(rdf_dict)) expect_identical(sort(names(rdf_dict)), sort(c("sas", "stata", "spss", "python", "r", "julia"))) })