test_that("test devMode", { testInit(opts = list(reproducible.useCache = "devMode")) clearCache(tmpCache, ask = FALSE) theTags <- "hiTest" centralTendency <- function(x) { mean(x) } funnyData <- c(1, 1, 1, 1, 10) uniqueUserTags <- c("thisIsUnique", "reallyUnique") ranNumsB <- Cache(centralTendency, funnyData, cachePath = tmpCache, userTags = uniqueUserTags ) # sets new value to Cache a <- showCache(tmpCache) # 1 unique artifact -- cacheId is 8be9cf2a072bdbb0515c5f0b3578f474 expect_true(NROW(unique(a[[.cacheTableHashColName()]])) == 1) # During development, we often redefine function internals centralTendency <- function(x) { median(x) } # When we rerun, we don't want to keep the "old" cache because the function will # never again be defined that way. Here, because of userTags being the same, # it will replace the entry in the Cache, effetively overwriting it, even though # it has a different cacheId ranNumsD <- Cache(centralTendency, funnyData, cachePath = tmpCache, userTags = uniqueUserTags) a <- showCache(tmpCache) # 1 unique artifact -- cacheId is bb1195b40c8d37a60fd6004e5d526e6b expect_true(NROW(unique(a[[.cacheTableHashColName()]])) == 1) # If it finds it by cacheID, doesn't matter what the userTags are ranNumsD <- Cache(centralTendency, funnyData, cachePath = tmpCache, userTags = "thisIsUnique") a <- showCache(tmpCache) # 1 unique artifact -- cacheId is bb1195b40c8d37a60fd6004e5d526e6b expect_true(NROW(unique(a[[.cacheTableHashColName()]])) == 1) ###### If you don't use userTags -- it acts like normal ranNumsE <- Cache(centralTendency, 1:10, cachePath = tmpCache) centralTendency <- function(x) { sort(table(a))[1] } ranNumsF <- Cache(centralTendency, 1:10, cachePath = tmpCache) a <- showCache(tmpCache) # 1 unique artifact -- cacheId is bb1195b40c8d37a60fd6004e5d526e6b expect_true(NROW(unique(a[[.cacheTableHashColName()]])) == 3) centralTendency <- function(x) { median(x) } ranNumsG <- Cache(centralTendency, 1:11, cachePath = tmpCache, userTags = theTags) a <- showCache(tmpCache) # 1 unique artifact -- cacheId is bb1195b40c8d37a60fd6004e5d526e6b expect_true(NROW(unique(a[[.cacheTableHashColName()]])) == 4) centralTendency <- function(x) { sort(table(x))[1] } ranNumsH <- Cache(centralTendency, 1:11, cachePath = tmpCache, userTags = theTags) a <- showCache(tmpCache) # expect_true(NROW(unique(a[[.cacheTableHashColName()]])) == 4) # Test multiple with same userTags, ie, not unambiguous opt <- options(reproducible.useCache = TRUE) ranNumsG <- Cache(centralTendency, 1:12, cachePath = tmpCache, userTags = theTags) options(opt) centralTendency <- function(x) median(x) mess <- capture_messages({ ranNumsG <- Cache(centralTendency, 1:12, cachePath = tmpCache, userTags = theTags, verbose = 3) }) expect_true(any(grepl("not unique; defaulting", mess))) ### Test that vague userTags don't accidentally delete a non-similar entry clearCache(tmpCache, ask = FALSE) centralTendency <- function(x) { sort(table(x))[1] } ranNumsH <- Cache(centralTendency, 1:11, cachePath = tmpCache, userTags = theTags) ranNumsI <- Cache(rnorm, 15, cachePath = tmpCache, userTags = theTags) a <- showCache(tmpCache) # 2 unique artifacts because VERY different expect_true(length(unique(a[[.cacheTableHashColName()]])) == 2) })