context("Testing old lpfr") test_that("lpfr works with one predictor", { skip_on_cran() data(DTI) # subset data as needed for this example cca = DTI$cca[which(DTI$case == 1),] rcst = DTI$rcst[which(DTI$case == 1),] DTI = DTI[which(DTI$case == 1),] # note there is missingness in the functional predictors # apply(is.na(cca), 2, mean) # apply(is.na(rcst), 2, mean) # fit two models with single functional predictors and plot the results #fit.cca = lpfr(Y=DTI$pasat, subj=DTI$ID, funcs = cca, smooth.cov=FALSE) fit.rcst = lpfr(Y=DTI$pasat, subj=DTI$ID, funcs = rcst, smooth.cov=FALSE) ## expect_equal_to_reference(fit.cca$BetaHat, "lpfr.cca.coef.rds") expect_is(fit.rcst, "list") expect_equal(length(fit.rcst), 10) }) test_that("lpfr works two predictors", { skip_on_cran() data(DTI) # subset data as needed for this example cca = DTI$cca[which(DTI$case == 1),] rcst = DTI$rcst[which(DTI$case == 1),] DTI = DTI[which(DTI$case == 1),] # fit a model with two functional predictors and plot the results fit.cca.rcst = lpfr(Y=DTI$pasat, subj=DTI$ID, funcs = list(cca,rcst), smooth.cov=FALSE) expect_is(fit.cca.rcst, "list") ## expect_equal_to_reference(fit.cca.rcst, "lpfr.fit.rds") })