library(testthat) library(recipes) skip_if_not_installed("modeldata") data(credit_data, package = "modeldata") set.seed(342) in_training <- sample(1:nrow(credit_data), 2000) credit_tr <- credit_data[in_training, ] credit_te <- credit_data[-in_training, ] test_that("simple mean", { rec <- recipe(Price ~ ., data = credit_tr) impute_rec <- rec %>% step_impute_mean(Age, Assets, Income, id = "") imputed <- prep(impute_rec, training = credit_tr, verbose = FALSE) te_imputed <- bake(imputed, new_data = credit_te) expect_equal(te_imputed$Age, credit_te$Age) assets_pred <- mean(credit_tr$Assets, na.rm = TRUE) assets_pred <- recipes:::cast(assets_pred, credit_tr$Assets) expect_equal( te_imputed$Assets[is.na(credit_te$Assets)], rep(assets_pred, sum(is.na(credit_te$Assets))) ) inc_pred <- mean(credit_tr$Income, na.rm = TRUE) inc_pred <- recipes:::cast(inc_pred, credit_tr$Assets) expect_equal( te_imputed$Income[is.na(credit_te$Income)], rep(inc_pred, sum(is.na(credit_te$Income))) ) means <- vapply(credit_tr[, c("Age", "Assets", "Income")], mean, numeric(1), na.rm = TRUE ) means <- purrr::map2(means, credit_tr[, c("Age", "Assets", "Income")], recipes:::cast) means <- unlist(means) imp_tibble_un <- tibble( terms = c("Age", "Assets", "Income"), value = rep(NA_real_, 3), id = "" ) imp_tibble_tr <- tibble( terms = c("Age", "Assets", "Income"), value = unname(means), id = "" ) expect_equal(as.data.frame(tidy(impute_rec, 1)), as.data.frame(imp_tibble_un)) expect_equal(tidy(imputed, 1), imp_tibble_tr) }) test_that("trimmed mean", { rec <- recipe(Price ~ ., data = credit_tr) impute_rec <- rec %>% step_impute_mean(Assets, trim = .1) imputed <- prep(impute_rec, training = credit_tr, verbose = FALSE) te_imputed <- bake(imputed, new_data = credit_te) mean_val <- mean(credit_tr$Assets, na.rm = TRUE, trim = .1) mean_val <- recipes:::cast(mean_val, credit_tr$Assets) expect_equal( te_imputed$Assets[is.na(credit_te$Assets)], rep(mean_val, sum(is.na(credit_te$Assets))) ) }) test_that("non-numeric", { rec <- recipe(Price ~ ., data = credit_tr) impute_rec <- rec %>% step_impute_mean(Assets, Job) expect_snapshot(error = TRUE, prep(impute_rec, training = credit_tr, verbose = FALSE) ) }) test_that("all NA values", { rec <- recipe(Price ~ ., data = credit_tr) impute_rec <- rec %>% step_impute_mean(Age, Assets) imputed <- prep(impute_rec, training = credit_tr, verbose = FALSE) imputed_te <- bake(imputed, new_data = credit_te %>% mutate(Age = NA)) expect_equal(unique(imputed_te$Age), imputed$steps[[1]]$means$Age) }) test_that("tunable", { rec <- recipe(~., data = iris) %>% step_impute_mean(all_predictors()) rec_param <- tunable.step_impute_mean(rec$steps[[1]]) expect_equal(rec_param$name, c("trim")) expect_true(all(rec_param$source == "recipe")) expect_true(is.list(rec_param$call_info)) expect_equal(nrow(rec_param), 1) expect_equal( names(rec_param), c("name", "call_info", "source", "component", "component_id") ) }) test_that("trim works", { set.seed(1234) x <- rnorm(1000) x[sample(seq_along(x), 100)] <- NA expect_equal( purrr::map(seq(0, 1, by = 0.1), ~mean(x, trim = .x, na.rm = TRUE)), purrr::map(seq(0, 1, by = 0.1), ~trim(x, trim = .x) %>% mean(na.rm = TRUE)) ) }) test_that("case weights", { credit_tr_cw <- credit_tr %>% mutate(Amount = frequency_weights(Amount)) impute_rec <- recipe(Price ~ ., data = credit_tr_cw) %>% step_impute_mean(Age, Assets, Income) %>% prep() ref_means <- credit_tr %>% select(Age, Assets, Income) %>% averages(wts = credit_tr_cw$Amount) %>% purrr::map(round, 0) expect_equal( impute_rec$steps[[1]]$means, ref_means ) # Trimmed impute_rec <- recipe(Price ~ ., data = credit_tr_cw) %>% step_impute_mean(Age, Assets, Income, trim = 0.2) %>% prep() ref_means <- credit_tr %>% dplyr::select(Age, Assets, Income) %>% purrr::map(trim, trim = 0.2) %>% purrr::map(weighted.mean, w = as.numeric(credit_tr_cw$Amount), na.rm = TRUE) %>% purrr::map(round, 0) expect_equal( impute_rec$steps[[1]]$means, ref_means ) expect_snapshot(impute_rec) # ---------------------------------------------------------------------------- credit_tr_cw <- credit_tr %>% mutate(Amount = importance_weights(Amount)) impute_rec <- recipe(Price ~ ., data = credit_tr_cw) %>% step_impute_mean(Age, Assets, Income) %>% prep() ref_means <- credit_tr %>% select(Age, Assets, Income) %>% averages(wts = NULL) %>% purrr::map(round, 0) expect_equal( impute_rec$steps[[1]]$means, ref_means ) # Trimmed impute_rec <- recipe(Price ~ ., data = credit_tr_cw) %>% step_impute_mean(Age, Assets, Income, trim = 0.2) %>% prep() ref_means <- credit_tr %>% dplyr::select(Age, Assets, Income) %>% purrr::map(trim, trim = 0.2) %>% purrr::map(~weighted.mean(.x, w = rep(1, length(.x)), na.rm = TRUE)) %>% purrr::map(round, 0) expect_equal( impute_rec$steps[[1]]$means, ref_means ) expect_snapshot(impute_rec) }) # Infrastructure --------------------------------------------------------------- test_that("bake method errors when needed non-standard role columns are missing", { rec <- recipe(Price ~ ., data = credit_tr) impute_rec <- rec %>% step_impute_mean(Age) %>% update_role(Age, new_role = "potato") %>% update_role_requirements(role = "potato", bake = FALSE) imputed <- prep(impute_rec, training = credit_tr, verbose = FALSE) expect_error(bake(imputed, new_data = credit_te[, c(-5)]), class = "new_data_missing_column") }) test_that("empty printing", { rec <- recipe(mpg ~ ., mtcars) rec <- step_impute_mean(rec) expect_snapshot(rec) rec <- prep(rec, mtcars) expect_snapshot(rec) }) test_that("empty selection prep/bake is a no-op", { rec1 <- recipe(mpg ~ ., mtcars) rec2 <- step_impute_mean(rec1) rec1 <- prep(rec1, mtcars) rec2 <- prep(rec2, mtcars) baked1 <- bake(rec1, mtcars) baked2 <- bake(rec2, mtcars) expect_identical(baked1, baked2) }) test_that("empty selection tidy method works", { rec <- recipe(mpg ~ ., mtcars) rec <- step_impute_mean(rec) expect <- tibble(terms = character(), value = double(), id = character()) expect_identical(tidy(rec, number = 1), expect) rec <- prep(rec, mtcars) expect_identical(tidy(rec, number = 1), expect) }) test_that("printing", { rec <- recipe(Price ~ ., data = credit_tr) %>% step_impute_mean(Age, Assets, Income) expect_snapshot(print(rec)) expect_snapshot(prep(rec)) }) test_that("tunable is setup to work with extract_parameter_set_dials", { skip_if_not_installed("dials") rec <- recipe(~., data = mtcars) %>% step_impute_mean( all_predictors(), trim = hardhat::tune() ) params <- extract_parameter_set_dials(rec) expect_s3_class(params, "parameters") expect_identical(nrow(params), 1L) })