library(testthat) library(recipes) skip_if_not_installed("modeldata") data(biomass, package = "modeldata") # ------------------------------------------------------------------------------ test_that("correct convex functions", { skip_if_not_installed("splines2") biomass_tr <- biomass[biomass$dataset == "Training", ] biomass_te <- biomass[biomass$dataset == "Testing", ] rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur, data = biomass_tr ) with_ns <- rec %>% step_spline_convex(carbon, hydrogen, deg_free = 5) with_ns <- prep(with_ns, training = biomass_tr, verbose = FALSE) with_ns_pred_tr <- bake(with_ns, new_data = biomass_tr) with_ns_pred_te <- bake(with_ns, new_data = biomass_te) carbon_ns_tr_exp <- splines2::cSpline(biomass_tr$carbon, df = 5) hydrogen_ns_tr_exp <- splines2::cSpline(biomass_tr$hydrogen, df = 5) carbon_ns_te_exp <- predict(carbon_ns_tr_exp, biomass_te$carbon) hydrogen_ns_te_exp <- predict(hydrogen_ns_tr_exp, biomass_te$hydrogen) expect_equal( unname(attr(carbon_ns_tr_exp, "knots")), with_ns$steps[[1]]$results$carbon$knots ) expect_equal( unname(attr(carbon_ns_tr_exp, "Boundary.knots")), with_ns$steps[[1]]$results$carbon$Boundary.knots ) expect_equal( unname(attr(hydrogen_ns_tr_exp, "knots")), with_ns$steps[[1]]$results$hydrogen$knots ) expect_equal( unname(attr(hydrogen_ns_tr_exp, "Boundary.knots")), with_ns$steps[[1]]$results$hydrogen$Boundary.knots ) carbon_ns_tr_res <- as.matrix(with_ns_pred_tr[, grep("carbon", names(with_ns_pred_tr))]) colnames(carbon_ns_tr_res) <- NULL hydrogen_ns_tr_res <- as.matrix(with_ns_pred_tr[, grep("hydrogen", names(with_ns_pred_tr))]) colnames(hydrogen_ns_tr_res) <- NULL carbon_ns_te_res <- as.matrix(with_ns_pred_te[, grep("carbon", names(with_ns_pred_te))]) colnames(carbon_ns_te_res) <- 1:ncol(carbon_ns_te_res) hydrogen_ns_te_res <- as.matrix(with_ns_pred_te[, grep("hydrogen", names(with_ns_pred_te))]) colnames(hydrogen_ns_te_res) <- 1:ncol(hydrogen_ns_te_res) ## remove attributes carbon_ns_tr_exp <- matrix(carbon_ns_tr_exp, ncol = 5) carbon_ns_te_exp <- matrix(carbon_ns_te_exp, ncol = 5) hydrogen_ns_tr_exp <- matrix(hydrogen_ns_tr_exp, ncol = 5) hydrogen_ns_te_exp <- matrix(hydrogen_ns_te_exp, ncol = 5) dimnames(carbon_ns_tr_res) <- NULL dimnames(carbon_ns_te_res) <- NULL dimnames(hydrogen_ns_tr_res) <- NULL dimnames(hydrogen_ns_te_res) <- NULL expect_equal(carbon_ns_tr_res, carbon_ns_tr_exp) expect_equal(carbon_ns_te_res, carbon_ns_te_exp) expect_equal(hydrogen_ns_tr_res, hydrogen_ns_tr_exp) expect_equal(hydrogen_ns_te_res, hydrogen_ns_te_exp) }) test_that("errors if degree > deg_free (#1170)", { skip_if_not_installed("splines2") expect_no_error( recipe(~., data = mtcars) %>% step_spline_convex(mpg, degree = 2, deg_free = 3, complete_set = TRUE) %>% prep() ) expect_no_error( recipe(~., data = mtcars) %>% step_spline_convex(mpg, degree = 3, deg_free = 3, complete_set = FALSE) %>% prep() ) expect_snapshot( error = TRUE, recipe(~., data = mtcars) %>% step_spline_convex(mpg, degree = 3, deg_free = 3, complete_set = TRUE) %>% prep() ) expect_snapshot( error = TRUE, recipe(~., data = mtcars) %>% step_spline_convex(mpg, degree = 4, deg_free = 3, complete_set = FALSE) %>% prep() ) }) test_that("check_name() is used", { dat <- mtcars dat$mpg_01 <- dat$mpg rec <- recipe(~ ., data = dat) %>% step_spline_convex(mpg) expect_snapshot( error = TRUE, prep(rec, training = dat) ) }) test_that("tunable", { biomass_tr <- biomass[biomass$dataset == "Training", ] biomass_te <- biomass[biomass$dataset == "Testing", ] rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur, data = biomass_tr ) rec <- recipe(~., data = iris) %>% step_spline_convex(all_predictors()) rec_param <- tunable.step_spline_convex(rec$steps[[1]]) expect_equal(rec_param$name, c("deg_free", "degree")) expect_true(all(rec_param$source == "recipe")) expect_true(is.list(rec_param$call_info)) expect_equal(nrow(rec_param), 2) expect_equal( names(rec_param), c("name", "call_info", "source", "component", "component_id") ) }) test_that("works when baked with 1 row", { rec <- recipe(mpg ~ ., data = mtcars) %>% step_spline_convex(disp) %>% prep() expect_no_error( res <- bake(rec, mtcars[1, ]) ) expect_identical(nrow(res), 1L) }) # Infrastructure --------------------------------------------------------------- test_that("bake method errors when needed non-standard role columns are missing", { rec <- recipe(mtcars) %>% step_spline_convex(disp) %>% update_role(disp, new_role = "potato") %>% update_role_requirements(role = "potato", bake = FALSE) rec_trained <- prep(rec, training = mtcars) expect_error(bake(rec_trained, new_data = mtcars[, -3]), class = "new_data_missing_column") }) test_that("empty printing", { rec <- recipe(mpg ~ ., mtcars) rec <- step_spline_convex(rec) expect_snapshot(rec) rec <- prep(rec, mtcars) expect_snapshot(rec) }) test_that("empty selection prep/bake is a no-op", { rec1 <- recipe(mpg ~ ., mtcars) rec2 <- step_spline_convex(rec1) rec1 <- prep(rec1, mtcars) rec2 <- prep(rec2, mtcars) baked1 <- bake(rec1, mtcars) baked2 <- bake(rec2, mtcars) expect_identical(baked1, baked2) }) test_that("empty selection tidy method works", { rec <- recipe(mpg ~ ., mtcars) rec <- step_spline_convex(rec) expect <- tibble(terms = character(), id = character()) expect_identical(tidy(rec, number = 1), expect) rec <- prep(rec, mtcars) expect_identical(tidy(rec, number = 1), expect) }) test_that("keep_original_cols works", { new_names <- paste0("mpg_", formatC(1:10, width = 2, flag = "0")) rec <- recipe(~ mpg, mtcars) %>% step_spline_convex(all_predictors(), keep_original_cols = FALSE) rec <- prep(rec) res <- bake(rec, new_data = NULL) expect_equal( colnames(res), new_names ) rec <- recipe(~ mpg, mtcars) %>% step_spline_convex(all_predictors(), keep_original_cols = TRUE) rec <- prep(rec) res <- bake(rec, new_data = NULL) expect_equal( colnames(res), c("mpg", new_names) ) }) test_that("keep_original_cols - can prep recipes with it missing", { # step_spline_convex() was added after keep_original_cols # Making this test case unlikely expect_true(TRUE) }) test_that("printing", { rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur, data = biomass) %>% step_spline_convex(carbon, hydrogen) expect_snapshot(print(rec)) expect_snapshot(prep(rec)) }) test_that("tunable is setup to work with extract_parameter_set_dials", { skip_if_not_installed("dials") rec <- recipe(~., data = mtcars) %>% step_spline_convex( all_predictors(), deg_free = hardhat::tune(), degree = hardhat::tune() ) params <- extract_parameter_set_dials(rec) expect_s3_class(params, "parameters") expect_identical(nrow(params), 2L) })