library(testthat) library(recipes) skip_if_not_installed("modeldata") data(biomass, package = "modeldata") biomass$fac <- factor(sample(letters[1:2], size = nrow(biomass), replace = TRUE)) rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur + fac, data = biomass ) test_that("imputation models", { imputed <- rec %>% step_impute_bag(carbon, fac, impute_with = imp_vars(hydrogen, oxygen), seed_val = 12, trees = 5 ) imputed_trained <- prep(imputed, training = biomass, verbose = FALSE) expect_equal(length(imputed_trained$steps[[1]]$models[["carbon"]]$mtrees), 5) ## make sure we get the same trees given the same random samples carb_samps <- lapply( imputed_trained$steps[[1]]$models[["carbon"]]$mtrees, function(x) x$bindx ) for (i in seq_along(carb_samps)) { carb_data <- biomass[carb_samps[[i]], c("carbon", "hydrogen", "oxygen")] carb_mod <- rpart::rpart(carbon ~ ., data = carb_data, control = rpart::rpart.control(xval = 0) ) expect_equal( carb_mod$splits, imputed_trained$steps[[1]]$models[["carbon"]]$mtrees[[i]]$btree$splits ) } fac_samps <- lapply( imputed_trained$steps[[1]]$models[[1]]$mtrees, function(x) x$bindx ) fac_ctrl <- imputed_trained$steps[[1]]$models[["fac"]]$mtrees[[1]]$btree$control ## make sure we get the same trees given the same random samples for (i in seq_along(fac_samps)) { fac_data <- biomass[fac_samps[[i]], c("fac", "hydrogen", "oxygen")] fac_mod <- rpart::rpart(fac ~ ., data = fac_data, control = fac_ctrl) expect_equal( fac_mod$splits, imputed_trained$steps[[1]]$models[["fac"]]$mtrees[[i]]$btree$splits ) } imp_tibble_un <- tibble( terms = c("carbon", "fac"), model = rep(list(NULL), 2), id = imputed_trained$steps[[1]]$id ) imp_tibble_tr <- tibble( terms = c("carbon", "fac"), model = unname(imputed_trained$steps[[1]]$models), id = imputed_trained$steps[[1]]$id ) expect_equal(as.data.frame(tidy(imputed, 1)), as.data.frame(imp_tibble_un)) expect_equal(tidy(imputed_trained, 1)$terms, imp_tibble_tr$terms) expect_equal(tidy(imputed_trained, 1)$model, imp_tibble_tr$model) }) test_that("All NA values", { imputed <- rec %>% step_impute_bag(carbon, fac, impute_with = imp_vars(hydrogen, oxygen), seed_val = 12, trees = 5 ) %>% prep(biomass) imputed_te <- bake(imputed, biomass %>% mutate(carbon = NA)) expect_equal(sum(is.na(imputed_te$carbon)), 0) }) test_that("Deprecation warning", { expect_snapshot(error = TRUE, recipe(~ ., data = mtcars) %>% step_bagimpute() ) }) test_that("tunable", { rec <- recipe(~., data = iris) %>% step_impute_bag(all_predictors(), impute_with = imp_vars(all_predictors())) rec_param <- tunable.step_impute_bag(rec$steps[[1]]) expect_equal(rec_param$name, c("trees")) expect_true(all(rec_param$source == "recipe")) expect_true(is.list(rec_param$call_info)) expect_equal(nrow(rec_param), 1) expect_equal( names(rec_param), c("name", "call_info", "source", "component", "component_id") ) }) test_that("non-factor imputation", { data(scat, package = "modeldata") scat$Location <- as.character(scat$Location) scat$Location[1] <- NA rec <- recipe(Species ~ ., data = scat) %>% step_impute_bag(Location, impute_with = imp_vars(all_predictors())) %>% prep(strings_as_factors = FALSE) expect_true(is.character(bake(rec, NULL, Location)[[1]])) }) # Infrastructure --------------------------------------------------------------- test_that("bake method errors when needed non-standard role columns are missing", { imputed <- rec %>% step_impute_bag(carbon, fac, impute_with = imp_vars(hydrogen, oxygen), seed_val = 12, trees = 5 ) %>% update_role(carbon, fac, new_role = "potato") %>% update_role_requirements(role = "potato", bake = FALSE) imputed_trained <- prep(imputed, training = biomass, verbose = FALSE) expect_error(bake(imputed_trained, new_data = biomass[, c(-3, -9)]), class = "new_data_missing_column") }) test_that("empty printing", { rec <- recipe(mpg ~ ., mtcars) rec <- step_impute_bag(rec) expect_snapshot(rec) rec <- prep(rec, mtcars) expect_snapshot(rec) }) test_that("empty selection prep/bake is a no-op", { rec1 <- recipe(mpg ~ ., mtcars) rec2 <- step_impute_bag(rec1) rec1 <- prep(rec1, mtcars) rec2 <- prep(rec2, mtcars) baked1 <- bake(rec1, mtcars) baked2 <- bake(rec2, mtcars) expect_identical(baked1, baked2) }) test_that("empty selection tidy method works", { rec <- recipe(mpg ~ ., mtcars) rec <- step_impute_bag(rec) expect <- tibble(terms = character(), model = list(), id = character()) expect_identical(tidy(rec, number = 1), expect) rec <- prep(rec, mtcars) expect_identical(tidy(rec, number = 1), expect) }) test_that("printing", { rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur + fac, data = biomass) %>% step_impute_bag(carbon, impute_with = imp_vars(hydrogen)) expect_snapshot(print(rec)) expect_snapshot(prep(rec)) }) test_that("tunable is setup to work with extract_parameter_set_dials", { skip_if_not_installed("dials") rec <- recipe(~., data = mtcars) %>% step_impute_bag( all_predictors(), trees = hardhat::tune() ) params <- extract_parameter_set_dials(rec) expect_s3_class(params, "parameters") expect_identical(nrow(params), 1L) })