library(testthat) library(recipes) set.seed(4693) rand_data <- data.frame(x = round(runif(10), 2), y = round(runif(10), 2)) rand_data$x[1] <- NA dists <- apply(as.matrix(rand_data), 1, function(x, y, z) { sqrt((x[1] - y)^2 + (x[2] - z)^2) }, y = 0.5, z = 0.25 ) test_that("basic functionality", { rec <- recipe(~ x + y, data = rand_data) %>% step_geodist(x, y, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE, log = FALSE ) rec_trained <- prep(rec, training = rand_data) tr_int <- bake(rec_trained, new_data = NULL, all_predictors()) te_int <- bake(rec_trained, rand_data, all_predictors()) expect_equal(tr_int[["geo_dist"]], dists) expect_equal(te_int[["geo_dist"]], dists) rec_log <- recipe(~ x + y, data = rand_data) %>% step_geodist(x, y, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE, log = TRUE ) rec_log_trained <- prep(rec_log, training = rand_data) tr_log_int <- bake(rec_log_trained, new_data = NULL, all_predictors()) te_log_int <- bake(rec_log_trained, rand_data, all_predictors()) expect_equal(tr_log_int[["geo_dist"]], log(dists)) expect_equal(te_log_int[["geo_dist"]], log(dists)) }) test_that("lat lon", { postal <- tibble(latitude = 0, longitude = 0) near_station <- recipe(~., data = postal) %>% step_geodist( lat = latitude, lon = longitude, log = FALSE, ref_lat = 0, ref_lon = 0, is_lat_lon = TRUE ) %>% prep() %>% bake(new_data = NULL) expect_equal(near_station[["geo_dist"]], 0) postal <- tibble(latitude = 38.8981014, longitude = -77.0104265) near_station <- recipe(~., data = postal) %>% step_geodist( lat = latitude, lon = longitude, log = FALSE, ref_lat = 38.8986312, ref_lon = -77.0062457, is_lat_lon = TRUE ) %>% prep() %>% bake(new_data = NULL) expect_equal(near_station[["geo_dist"]], 367, tolerance = 1) expect_snapshot(error = TRUE, near_station <- recipe(~., data = postal) %>% step_geodist( lat = latitude, lon = longitude, log = FALSE, ref_lat = 100, ref_lon = 100, is_lat_lon = TRUE ) %>% prep() ) expect_snapshot(error = TRUE, near_station <- recipe(~., data = postal) %>% step_geodist( lat = latitude, lon = longitude, log = FALSE, ref_lat = 0, ref_lon = 190, is_lat_lon = TRUE ) %>% prep() ) expect_snapshot(error = TRUE, near_station <- recipe(~., data = postal) %>% step_geodist( lat = latitude, lon = longitude, log = FALSE, ref_lat = -100, ref_lon = 0, is_lat_lon = TRUE ) %>% prep() ) expect_snapshot(error = TRUE, near_station <- recipe(~., data = postal) %>% step_geodist( lat = latitude, lon = longitude, log = FALSE, ref_lat = 0, ref_lon = -190, is_lat_lon = TRUE ) %>% prep() ) postal <- tibble(latitude = 100, longitude = 0) expect_snapshot(error = TRUE, near_station <- recipe(~., data = postal) %>% step_geodist( lat = latitude, lon = longitude, log = FALSE, ref_lat = 38.8986312, ref_lon = -77.0062457, is_lat_lon = TRUE ) %>% prep() ) postal <- tibble(latitude = 0, longitude = 190) expect_snapshot(error = TRUE, near_station <- recipe(~., data = postal) %>% step_geodist( lat = latitude, lon = longitude, log = FALSE, ref_lat = 38.8986312, ref_lon = -77.0062457, is_lat_lon = TRUE ) %>% prep() ) postal <- tibble(latitude = -100, longitude = 0) expect_snapshot(error = TRUE, near_station <- recipe(~., data = postal) %>% step_geodist( lat = latitude, lon = longitude, log = FALSE, ref_lat = 38.8986312, ref_lon = -77.0062457, is_lat_lon = TRUE ) %>% prep() ) postal <- tibble(latitude = 0, longitude = -190) expect_snapshot(error = TRUE, near_station <- recipe(~., data = postal) %>% step_geodist( lat = latitude, lon = longitude, log = FALSE, ref_lat = 38.8986312, ref_lon = -77.0062457, is_lat_lon = TRUE ) %>% prep() ) }) test_that("check_name() is used", { dat <- mtcars dat$geo_dist <- dat$mpg rec <- recipe(~., data = dat) %>% step_geodist(vs, am, ref_lat = 0, ref_lon = 0) expect_snapshot( error = TRUE, prep(rec, training = dat) ) }) test_that("bad args", { rand_data_2 <- rand_data rand_data_2$x1 <- runif(nrow(rand_data_2)) rand_data_2$y1 <- runif(nrow(rand_data_2)) rec <- recipe(~., data = rand_data_2) expect_snapshot(error = TRUE, rec %>% step_geodist(starts_with("x"), y, ref_lat = 0.5, ref_lon = 0.25) %>% prep(training = rand_data_2) ) expect_snapshot(error = TRUE, rec %>% step_geodist(x, starts_with("y"), ref_lat = 0.5, ref_lon = 0.25) %>% prep(training = rand_data_2) ) expect_snapshot(error = TRUE, rec %>% step_geodist(x, y, ref_lat = letters[1:2], ref_lon = 0.25) %>% prep(training = rand_data_2) ) expect_snapshot(error = TRUE, rec %>% step_geodist(x, y, ref_lon = letters[1:2], ref_lat = 0.25) %>% prep(training = rand_data_2) ) expect_snapshot(error = TRUE, rec %>% step_geodist(x, y, ref_lon = 0.5, ref_lat = 0.25, name = 1) %>% prep(training = rand_data_2) ) expect_snapshot(error = TRUE, rec %>% step_geodist(x, y, ref_lon = 0.5, ref_lat = 0.25, log = exp(1)) %>% prep(training = rand_data_2) ) expect_snapshot(error = TRUE, recipe(~ x + y, data = rand_data) %>% step_geodist(x, y, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = "no", log = FALSE ) %>% prep(training = rand_data) ) expect_snapshot(error = TRUE, recipe(~ x + y, data = rand_data) %>% step_geodist(x, y, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = c(TRUE, TRUE), log = FALSE ) %>% prep(training = rand_data) ) }) # Infrastructure --------------------------------------------------------------- test_that("bake method errors when needed non-standard role columns are missing", { rec <- recipe(~ x + y, data = rand_data) %>% step_geodist(x, y, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE, log = FALSE ) %>% update_role(x, y, new_role = "potato") %>% update_role_requirements(role = "potato", bake = FALSE) rec_trained <- prep(rec, rand_data) expect_error(bake(rec_trained, new_data = rand_data[, 2, drop = FALSE]), class = "new_data_missing_column") }) test_that("empty printing", { rec <- recipe(mpg ~ ., mtcars) rec <- step_geodist(rec, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE) expect_snapshot(rec) rec <- prep(rec, mtcars) expect_snapshot(rec) }) test_that("empty selection prep/bake is a no-op", { rec1 <- recipe(mpg ~ ., mtcars) rec2 <- step_geodist(rec1, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE) rec1 <- prep(rec1, mtcars) rec2 <- prep(rec2, mtcars) baked1 <- bake(rec1, mtcars) baked2 <- bake(rec2, mtcars) expect_identical(baked1, baked2) }) test_that("empty selection tidy method works", { rec <- recipe(mpg ~ ., mtcars) rec <- step_geodist(rec, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE) expect <- tibble( latitude = character(), longitude = character(), ref_latitude = double(), ref_longitude = double(), is_lat_lon = logical(), name = character(), id = character() ) expect_identical(tidy(rec, number = 1), expect) rec <- prep(rec, mtcars) expect_identical(tidy(rec, number = 1), expect) }) test_that("keep_original_cols works", { new_names <- c("geo_dist") rec <- recipe(~ x + y, data = rand_data) %>% step_geodist( x, y, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE, keep_original_cols = FALSE ) rec <- prep(rec) res <- bake(rec, new_data = NULL) expect_equal( colnames(res), new_names ) rec <- recipe(~ x + y, data = rand_data) %>% step_geodist( x, y, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE, keep_original_cols = TRUE ) rec <- prep(rec) res <- bake(rec, new_data = NULL) expect_equal( colnames(res), c("x", "y", new_names) ) }) test_that("keep_original_cols - can prep recipes with it missing", { rec <- recipe(~ x + y, data = rand_data) %>% step_geodist( x, y, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE ) rec$steps[[1]]$keep_original_cols <- NULL expect_snapshot( rec <- prep(rec) ) expect_error( bake(rec, new_data = rand_data), NA ) }) test_that("printing", { rec <- recipe(~ x + y, data = rand_data) %>% step_geodist( x, y, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE ) expect_snapshot(print(rec)) expect_snapshot(prep(rec)) })