test_that("causal forest helpers work", { skip_if_not_installed("grf") library(dplyr) library(DeclareDesign) library(grf) covariate_names <- paste0("X.", 1:10) f_Y <- function(z, X.1, X.2, X.3, X.4, u) z * X.1 + z * X.2 ^ 2 + z * exp(X.3) + z * X.3 * X.4 + u get_best_predictor <- function(data) select(data, estimate = var_imp) |> slice(1) declaration_19.1 <- declare_model( N = 1000, X = matrix(rnorm(10 * N), N), U = rnorm(N), Z = simple_ra(N)) + declare_model( Y_Z_1 = f_Y(1, X.1, X.2, X.3, X.4, U), Y_Z_0 = f_Y(0, X.1, X.2, X.3, X.4, U), tau = Y_Z_1 - Y_Z_0) + declare_inquiry(handler = best_predictor, covariate_names = covariate_names, label = "best") + declare_measurement(Y = reveal_outcomes(Y ~ Z)) + declare_measurement( handler = causal_forest_handler, covariate_names = covariate_names, share_train = 0.5, num.threads = 1 ) + declare_measurement( handler = fabricate, low_test = (test & (pred < quantile(pred[test], 0.2))), low_all = pred < quantile(pred, 0.2) ) + declare_inquiry( ate = mean(tau), worst_effects_all = mean(tau[tau <= quantile(tau, 0.2)]), worst_effects_test = mean(tau[test & tau <= quantile(tau[test], 0.2)]), weak_effects_all = mean(tau[low_all]), weak_effects_test = mean(tau[low_test])) + declare_estimator(Y ~ Z, inquiry = "ate") + declare_estimator(Y ~ Z, subset = low_test, inquiry = c("weak_effects_test", "worst_effects_test"), label = "lm_weak_test") + declare_estimator(Y ~ Z, subset = low_all, inquiry = c("weak_effects_all", "worst_effects_all"), label = "lm_weak_all") + declare_estimator(handler = label_estimator(get_best_predictor), inquiry = "best_predictor", label = "cf") expect_error(simulate_design(declaration_19.1, sims = 1, future.seed = FALSE), NA) })