# Script to construct, in rdecision, the model reported by Jenks et al # (App Health Econ 2016;14:135-149) for a securement dressing for central # venous and arterial catheters. # # The checks are done as part of the testthat framework, which ensures that # any changes in the package code which unintentionally result in deviations # from the reported results of the model are identified. # # Code to construct and run the model is contained within labelled knitr code # chunks and does not contain test expectations, so can be used by a vignette. # Unlabelled code chunks may contain testthat expectations and should be # ignored by a vignette. ## @knitr variables ----------------------------------------------------------- # baseline risk r.CRBSI <- GammaModVar$new( "Baseline CRBSI rate", "/1000 catheter days", shape = (1.48 ^ 2L) / (0.12 ^ 2L), scale = (0.12 ^ 2L) / 1.48 ) r.LSI <- GammaModVar$new( "Baseline LSI rate", "/1000 catheter days", shape = (0.14 ^ 2L) / (0.5 ^ 2L), scale = (0.5 ^ 2L) / 0.14 ) r.Dermatitis <- BetaModVar$new( "Baseline dermatitis risk", "/catheter", alpha = 1L, beta = 475L ) # relative effectiveness hr.CRBSI <- LogNormModVar$new( "Tegaderm CRBSI HR", "HR", p1 = 0.402, p2 = (0.868 - 0.186) / (2L * 1.96), param = "LN7" ) hr.LSI <- LogNormModVar$new( "Tegaderm LSI HR", "HR", p1 = 0.402, p2 = (0.868 - 0.186) / (2L * 1.96), param = "LN7" ) rr.Dermatitis <- LogNormModVar$new( "Tegaderm Dermatitis RR", "RR", p1 = 1.0, p2 = 0.5, param = "LN7" ) # cost variables c.CRBSI <- GammaModVar$new( "CRBSI cost", "GBP", shape = (9900.0 ^ 2L) / (3000.0 ^ 2L), scale = (3000.0 ^ 2L) / 9900.0 ) c.LSI <- GammaModVar$new( "LSI cost", "GBP", shape = (100.0 ^ 2L) / (30.0 ^ 2L), scale = (30.0 ^ 2L) / 100.0 ) c.Dermatitis <- GammaModVar$new( "Dermatitis cost", "GBP", shape = (6.0 ^ 2L) / (3.0 ^ 2L), scale = (3.0 ^ 2L) / 6.0 ) # number of dressings and days with catheter n.dressings <- GammaModVar$new( "No. dressings", "dressings", shape = (3.0 ^ 2L) / (2.0 ^ 2L), scale = (2.0 ^ 2L) / 3.0 ) n.cathdays <- GammaModVar$new( "No. days with catheter", "days", shape = (10.0 ^ 2L) / (5.0 ^ 2L), scale = (5.0 ^ 2L) / 10.0 ) ## @knitr --------------------------------------------------------------------- test_that("variables have expected values", { # baseline CRBSI expect_intol(r.CRBSI$mean(), 1.48, 0.02) q <- r.CRBSI$quantile(probs = c(0.025, 0.975)) expect_intol(q[[1L]], 1.28, 0.05) expect_intol(q[[2L]], 1.75, 0.05) # baseline LSI expect_intol(r.LSI$mean(), 0.14, 0.01) q <- r.LSI$quantile(probs = c(0.025, 0.975)) expect_intol(q[[1L]], 0.0, 0.05) # baseline dermatitis expect_intol(r.Dermatitis$mean(), 1L / 476L, 0.0001) q <- r.Dermatitis$quantile(probs = c(0.025, 0.975)) expect_intol(q[[1L]], 0.000, 0.005) expect_intol(q[[2L]], 0.010, 0.005) # HR of CRBSI for Tegaderm expect_intol(hr.CRBSI$mean(), 0.402, 0.010) q <- hr.CRBSI$quantile(probs = c(0.025, 0.975)) expect_intol(q[[1L]], 0.186, 0.05) expect_intol(q[[2L]], 0.868, 0.05) # HR of LSI for Tegaderm expect_intol(hr.LSI$mean(), 0.402, 0.010) q <- hr.LSI$quantile(probs = c(0.025, 0.975)) expect_intol(q[[1L]], 0.186, 0.05) expect_intol(q[[2L]], 0.868, 0.05) # RR of dermatitis expect_intol(rr.Dermatitis$mean(), 1.0, 0.010) q <- rr.Dermatitis$quantile(probs = c(0.025, 0.975)) expect_intol(q[[1L]], 0.35, 0.05) expect_intol(q[[2L]], 2.26, 0.05) # cost of CRBSI expect_intol(c.CRBSI$mean(), 9900.0, 10.0) q <- c.CRBSI$quantile(probs = c(0.025, 0.975)) expect_intol(q[[1L]], 4921.0, 10.0) expect_intol(q[[2L]], 16589.0, 10.0) # cost of LSI expect_intol(c.LSI$mean(), 100.0, 10.0) q <- c.LSI$quantile(probs = c(0.025, 0.975)) expect_intol(q[[1L]], 50.1, 1.0) expect_intol(q[[2L]], 166.8, 1.0) # cost of dermatitis expect_intol(c.Dermatitis$mean(), 6.0, 0.1) q <- c.Dermatitis$quantile(probs = c(0.025, 0.975)) expect_intol(q[[1L]], 1.64, 0.1) expect_intol(q[[2L]], 13.1, 0.1) # number of dressings expect_intol(n.dressings$mean(), 3.0, 0.1) q <- n.dressings$quantile(probs = c(0.025, 0.975)) expect_intol(q[[1L]], 0.4, 0.1) expect_intol(q[[2L]], 8.0, 0.1) # number of catheter days expect_intol(n.cathdays$mean(), 10.0, 0.1) q <- n.cathdays$quantile(probs = c(0.025, 0.975)) expect_intol(q[[1L]], 2.7, 1.0) expect_intol(q[[2L]], 21.9, 1.0) }) ## @knitr expressions --------------------------------------------------------- p.CRBSI.S <- ExprModVar$new( "P(CRBSI | standard dressing)", "P", rlang::quo(r.CRBSI * n.cathdays / 1000.0) ) p.CRBSI.T <- ExprModVar$new( "P(CRBSI|Tegaderm)", "P", rlang::quo(p.CRBSI.S * hr.CRBSI) ) p.LSI.S <- ExprModVar$new( "P(LSI | Standard)", "/patient", rlang::quo(r.LSI * n.cathdays / 1000.0) ) p.LSI.T <- ExprModVar$new( "P(LSI | Tegaderm)", "P", rlang::quo(p.LSI.S * hr.LSI) ) p.Dermatitis.S <- ExprModVar$new( "P(dermatitis | standard dressing)", "P", rlang::quo(r.Dermatitis) ) p.Dermatitis.T <- ExprModVar$new( "P(dermatitis | Tegaderm)", "P", rlang::quo(p.Dermatitis.S * rr.Dermatitis) ) c.Tegaderm <- ExprModVar$new( "Tegaderm CHG cost", "GBP", rlang::quo(6.26 * n.dressings) ) c.Standard <- ExprModVar$new( "Standard dressing cost", "GBP", rlang::quo(1.54 * n.dressings) ) ## @knitr tree ---------------------------------------------------------------- # create decision tree th <- as.difftime(7L, units = "days") # standard dressing t01 <- LeafNode$new("t01", interval = th) t02 <- LeafNode$new("t02", interval = th) c01 <- ChanceNode$new() e01 <- Reaction$new( c01, t01, p = p.Dermatitis.S, cost = c.Dermatitis, label = "Dermatitis" ) e02 <- Reaction$new( c01, t02, p = NA_real_, cost = 0.0, label = "No dermatitis" ) t03 <- LeafNode$new("t03", interval = th) t04 <- LeafNode$new("t04", interval = th) c02 <- ChanceNode$new() e03 <- Reaction$new( c02, t03, p = p.Dermatitis.S, cost = c.Dermatitis, label = "Dermatitis" ) e04 <- Reaction$new( c02, t04, p = NA_real_, cost = 0.0, label = "No dermatitis" ) c03 <- ChanceNode$new() e05 <- Reaction$new(c03, c01, p = p.LSI.S, cost = c.LSI, label = "LSI") e06 <- Reaction$new(c03, c02, p = NA_real_, cost = 0.0, label = "No LSI") t11 <- LeafNode$new("t11", interval = th) t12 <- LeafNode$new("t12", interval = th) c11 <- ChanceNode$new() e11 <- Reaction$new( c11, t11, p = p.Dermatitis.S, cost = c.Dermatitis, label = "Dermatitis" ) e12 <- Reaction$new( c11, t12, p = NA_real_, cost = 0.0, label = "No Dermatitis" ) t13 <- LeafNode$new("t13", interval = th) t14 <- LeafNode$new("t14", interval = th) c12 <- ChanceNode$new() e13 <- Reaction$new( c12, t13, p = p.Dermatitis.S, cost = c.Dermatitis, label = "Dermatitis" ) e14 <- Reaction$new( c12, t14, p = NA_real_, cost = 0.0, label = "No dermatitis" ) c13 <- ChanceNode$new() e15 <- Reaction$new(c13, c11, p = p.LSI.S, cost = c.LSI, label = "LSI") e16 <- Reaction$new(c13, c12, p = NA_real_, cost = 0.0, label = "No LSI") c23 <- ChanceNode$new() e21 <- Reaction$new(c23, c03, p = p.CRBSI.S, cost = c.CRBSI, label = "CRBSI") e22 <- Reaction$new(c23, c13, p = NA_real_, cost = 0.0, label = "No CRBSI") # Tegaderm branch t31 <- LeafNode$new("t31", interval = th) t32 <- LeafNode$new("t32", interval = th) c31 <- ChanceNode$new() e31 <- Reaction$new( c31, t31, p = p.Dermatitis.T, cost = c.Dermatitis, label = "Dermatitis" ) e32 <- Reaction$new( c31, t32, p = NA_real_, cost = 0.0, label = "no dermatitis" ) t33 <- LeafNode$new("t33", interval = th) t34 <- LeafNode$new("t34", interval = th) c32 <- ChanceNode$new() e33 <- Reaction$new( c32, t33, p = p.Dermatitis.T, cost = c.Dermatitis, label = "Dermatitis" ) e34 <- Reaction$new( c32, t34, p = NA_real_, cost = 0.0, label = "No dermatitis" ) c33 <- ChanceNode$new() e35 <- Reaction$new(c33, c31, p = p.LSI.T, cost = c.LSI, label = "LSI") e36 <- Reaction$new(c33, c32, p = NA_real_, cost = 0.0, label = "No LSI") t41 <- LeafNode$new("t41", interval = th) t42 <- LeafNode$new("t42", interval = th) c41 <- ChanceNode$new() e41 <- Reaction$new( c41, t41, p = p.Dermatitis.T, cost = c.Dermatitis, label = "Dermatitis" ) e42 <- Reaction$new( c41, t42, p = NA_real_, cost = 0.0, label = "No dermatitis" ) t43 <- LeafNode$new("t43", interval = th) t44 <- LeafNode$new("t44", interval = th) c42 <- ChanceNode$new() e43 <- Reaction$new( c42, t43, p = p.Dermatitis.T, cost = c.Dermatitis, label = "Dermatitis" ) e44 <- Reaction$new( c42, t44, p = NA_real_, cost = 0.0, label = "No dermatitis" ) c43 <- ChanceNode$new() e45 <- Reaction$new(c43, c41, p = p.LSI.T, cost = c.LSI, label = "LSI") e46 <- Reaction$new(c43, c42, p = NA_real_, cost = 0.0, label = "No LSI") c53 <- ChanceNode$new() e51 <- Reaction$new(c53, c43, p = p.CRBSI.T, cost = c.CRBSI, label = "CRBSI") e52 <- Reaction$new(c53, c33, p = NA_real_, cost = 0.0, label = "no CRBSI") # decision node d1 <- DecisionNode$new("d1") e9 <- Action$new(d1, c23, label = "Standard", cost = c.Standard) e10 <- Action$new(d1, c53, label = "Tegaderm", cost = c.Tegaderm) # create decision tree V <- list( d1, c01, c02, c03, c11, c12, c13, c23, c31, c32, c33, c41, c42, c43, c53, t01, t02, t03, t04, t11, t12, t13, t14, t31, t32, t33, t34, t41, t42, t43, t44 ) E <- list( e01, e02, e03, e04, e05, e06, e11, e12, e13, e14, e15, e16, e21, e22, e31, e32, e33, e34, e35, e36, e41, e42, e43, e44, e45, e46, e51, e52, e9, e10 ) DT <- DecisionTree$new(V, E) ## @knitr --------------------------------------------------------------------- test_that("model variables are as expected", { mv <- DT$modvars() expect_length(mv, 19L) MVT <- DT$modvar_table() expect_identical(nrow(MVT), 19L) expect_identical(sum(MVT$Est), 8L) MVT <- DT$modvar_table(FALSE) expect_identical(nrow(MVT), 11L) }) ## @knitr basecase ------------------------------------------------------------ RES <- DT$evaluate() ## @knitr -------------------------------------------------------------------- test_that("EAC base case agrees with direct calculation", { # values from Table 4 r_crbsi <- 1.48 r_lsi <- 0.14 r_derm <- 0.0021 hr_crbsi_teg <- 0.402 hr_lsi_teg <- 0.402 rr_derm_teg <- 1.0 c_crbsi <- 9900.0 c_derm <- 6.0 c_lsi <- 100.0 n_cdays <- 10.0 n_dress <- 3L c_teg <- 6.26 c_std <- 1.54 # probabilities p_crbsi_std <- r_crbsi * (n_cdays / 1000.0) p_lsi_std <- r_lsi * (n_cdays / 1000.0) p_derm_std <- r_derm p_crbsi_teg <- p_crbsi_std * hr_crbsi_teg p_lsi_teg <- p_lsi_std * hr_lsi_teg p_derm_teg <- rr_derm_teg * p_derm_std # component costs cdress_std <- c_std * n_dress cdress_teg <- c_teg * n_dress ccrbsi_std <- c_crbsi * p_crbsi_std ccrbsi_teg <- c_crbsi * p_crbsi_teg clsi_std <- c_lsi * p_lsi_std clsi_teg <- c_lsi * p_lsi_teg cderm_std <- c_derm * p_derm_std cderm_teg <- c_derm * p_derm_teg # total costs c_std <- cdress_std + ccrbsi_std + clsi_std + cderm_std c_teg <- cdress_teg + ccrbsi_teg + clsi_teg + cderm_teg # check against the model expect_intol(RES$Cost[RES$d1 == "Standard"], c_std, 2.00) expect_intol(RES$Cost[RES$d1 == "Tegaderm"], c_teg, 2.00) # check against the Excel model expect_intol(RES$Cost[RES$d1 == "Standard"], 151.29, 2.00) expect_intol(RES$Cost[RES$d1 == "Tegaderm"], 77.75, 2.00) }) ## @knitr -------------------------------------------------------------------- test_that("illegal arguments to evaluate are rejected", { expect_error(DT$evaluate(setvars = 42L), class = "setvars_not_character") expect_error(DT$evaluate(setvars = "mode"), class = "setvars_invalid") expect_silent(DT$evaluate(setvars = "q2.5")) expect_silent(DT$evaluate(setvars = "q50")) expect_silent(DT$evaluate(setvars = "q97.5")) expect_silent(DT$evaluate(setvars = "current")) }) ## @knitr -------------------------------------------------------------------- test_that("tornado method rejects illegal arguments", { grDevices::pdf(file = NULL) # tornado expect_error(DT$tornado(), class = "missing_strategy") expect_error( DT$tornado(index = list(e10), ref = list(e52)), class = "invalid_strategy" ) expect_error( DT$tornado(index = list(e10), ref = list(e9), outcome = "survival"), class = "invalid_outcome" ) expect_error( DT$tornado(index = list(e10), ref = list(e9), draw = 42L), class = "invalid_draw" ) expect_error( DT$tornado( index = list(e10), ref = list(e9), exclude = 42L, draw = TRUE ), class = "exclude_not_list" ) expect_error( DT$tornado( index = list(e10), ref = list(e9), exclude = list("SN1", "SN2", "SNX"), draw = TRUE ), class = "exclude_element_not_modvar" ) expect_silent( DT$tornado( index = list(e10), ref = list(e9), exclude = list(hr.CRBSI$description()), draw = TRUE ) ) to <- DT$tornado( index = list(e10), ref = list(e9), draw = TRUE ) expect_identical(nrow(to), 11L) grDevices::dev.off() }) ## @knitr PSA ----------------------------------------------------------------- N <- 1000L psa <- DT$evaluate(setvars = "random", by = "run", N = N) psa$Difference <- psa$Cost.Standard - psa$Cost.Tegaderm ## @knitr --------------------------------------------------------------------- test_that("PSA replicates values from Excel model", { skip_on_cran() expect_intol(mean(psa$Cost.Standard), 151.29, 10.00) expect_intol(mean(psa$Cost.Tegaderm), 77.75, 10.00) expect_intol(mean(psa$Difference), 72.90, 10.00) expect_intol(sum(psa$Difference > 0.0) / N, 0.978, tol = 0.05) }) ## @knitr scenario ----------------------------------------------------------- r.CRBSI <- GammaModVar$new( "Baseline CRBSI rate", "/1000 catheter days", shape = (0.30 ^ 2L) / (0.102 ^ 2L), scale = (0.102 ^ 2L) / 0.30 ) p.CRBSI.S <- ExprModVar$new( "P(CRBSI | standard dressing)", "P", rlang::quo(r.CRBSI * n.cathdays / 1000.0) ) p.CRBSI.T <- ExprModVar$new( "P(CRBSI|Tegaderm)", "P", rlang::quo(p.CRBSI.S * hr.CRBSI) ) e21 <- Reaction$new(c23, c03, p = p.CRBSI.S, cost = c.CRBSI, label = "CRBSI") e22 <- Reaction$new(c23, c13, p = NA_real_, cost = 0.0, label = "No CRBSI") e51 <- Reaction$new(c53, c43, p = p.CRBSI.T, cost = c.CRBSI, label = "CRBSI") e52 <- Reaction$new(c53, c33, p = NA_real_, cost = 0.0, label = "no CRBSI") E <- list( e01, e02, e03, e04, e05, e06, e11, e12, e13, e14, e15, e16, e21, e22, e31, e32, e33, e34, e35, e36, e41, e42, e43, e44, e45, e46, e51, e52, e9, e10 ) DT <- DecisionTree$new(V, E) ## @knitr -------------------------------------------------------------------- test_that("scenario case agrees with direct calculation", { # evaluate the scenario as a point estimate s_sco <- DT$evaluate() # values from Table 4 r_crbsi <- 0.30 r_lsi <- 0.14 r_derm <- 0.0021 hr_crbsi_teg <- 0.402 hr_lsi_teg <- 0.402 rr_derm_teg <- 1.0 c_crbsi <- 9900.0 c_derm <- 6.0 c_lsi <- 100.0 n_cdays <- 10.0 n_dress <- 3L c_teg <- 6.26 c_std <- 1.54 # probabilities p_crbsi_std <- r_crbsi * (n_cdays / 1000.0) p_lsi_std <- r_lsi * (n_cdays / 1000.0) p_derm_std <- r_derm p_crbsi_teg <- p_crbsi_std * hr_crbsi_teg p_lsi_teg <- p_lsi_std * hr_lsi_teg p_derm_teg <- rr_derm_teg * p_derm_std # component costs cdress_std <- c_std * n_dress cdress_teg <- c_teg * n_dress ccrbsi_std <- c_crbsi * p_crbsi_std ccrbsi_teg <- c_crbsi * p_crbsi_teg clsi_std <- c_lsi * p_lsi_std clsi_teg <- c_lsi * p_lsi_teg cderm_std <- c_derm * p_derm_std cderm_teg <- c_derm * p_derm_teg # total costs c_std <- cdress_std + ccrbsi_std + clsi_std + cderm_std c_teg <- cdress_teg + ccrbsi_teg + clsi_teg + cderm_teg # check against the model expect_intol(s_sco$Cost[s_sco$d1 == "Standard"], c_std, 2.00) expect_intol(s_sco$Cost[s_sco$d1 == "Tegaderm"], c_teg, 2.00) # check against the excel model expect_intol(s_sco$Cost[s_sco$d1 == "Standard"], 34.47, 2.00) expect_intol(s_sco$Cost[s_sco$d1 == "Tegaderm"], 30.79, 2.00) }) ## @knitr scenario-PSA -------------------------------------------------------- N <- 1000L psa <- DT$evaluate(setvars = "random", by = "run", N = N) psa$Difference <- psa$Cost.Standard - psa$Cost.Tegaderm ## @knitr --------------------------------------------------------------------- test_that("scenario PSA agrees with reported results", { skip_on_cran() expect_intol(mean(psa$Cost.Standard), 34.47, 5.00) expect_intol(mean(psa$Cost.Tegaderm), 30.79, 5.00) expect_intol(mean(psa$Difference), 3.56, 3.00) expect_intol(sum(psa$Difference > 0.0) / N, 0.579, tol = 0.2) }) ## @knitr threshold-hr ------------------------------------------------------- hr_threshold <- DT$threshold( index = list(e10), ref = list(e9), outcome = "saving", mvd = "Tegaderm CRBSI HR", a = 0.1, b = 0.9, tol = 0.01 ) ## @knitr -------------------------------------------------------------------- test_that("scenario hazard rate threshold agrees with that reported", { expect_intol(hr_threshold, 0.53, tol = 0.05) }) ## @knitr threshold-ccrbsi ---------------------------------------------------- c_crbsi_threshold <- DT$threshold( index = list(e10), ref = list(e9), outcome = "saving", mvd = "CRBSI cost", a = 0.0, b = 9900.0, tol = 10.0 ) ## @knitr -------------------------------------------------------------------- test_that("scenario CRBSI cost threshold agrees with reported value", { expect_intol(c_crbsi_threshold, 8000.0, tol = 300.0) })