# Script to construct, in rdecision, the model described by Dong and Buxton (Int # J Health Tech Assessment 2006;22:191-202) for computer-assisted total knee # replacement, and to check that its results agree with those presented in the # paper. # # The checks are done as part of the testthat framework, ensuring that # changes in the package code which unintentionally result in deviations # from the expected results of the model are identified. # # Code to construct and run the model is contained within labelled knitr code # chunks and do not contain test expectations, so can be used by a vignette. # Unlabelled code chunks may contain testthat expectations and should be # ignored by a vignette. ## @knitr state-names --------------------------------------------------------- states <- c( "A" = "TKR operation for knee problems", "B" = "TKR with serious complications", "C" = "TKR with minor complications", "D" = "Normal health after primary TKR", "E" = "Complex revision", "F" = "Simple revision", "G" = "Other treatments", "H" = "Normal health after TKR revision", "I" = "Death" ) ## @knitr utils-point ---------------------------------------------------------- utility_A <- 0.72 utility_B <- 0.35 utility_C <- 0.66 utility_D <- 0.78 utility_E <- 0.51 utility_F <- 0.66 utility_G <- 0.72 utility_H <- 0.68 utility_I <- 0.00 ## @knitr costs-point ---------------------------------------------------------- cost_A <- 5197.0 cost_B <- 0.0 cost_C <- 0.0 cost_D <- 0.0 cost_E <- 7326.0 cost_F <- 6234.0 cost_G <- 2844.0 cost_H <- 0.0 cost_I <- 0.0 cost_CAS <- 235.0 ## @knitr SMM-point ------------------------------------------------------------ # Markov states sA <- MarkovState$new(states["A"], utility = utility_A) sB <- MarkovState$new(states["B"], utility = utility_B) sC <- MarkovState$new(states["C"], utility = utility_C) sD <- MarkovState$new(states["D"], utility = utility_D) sE <- MarkovState$new(states["E"], utility = utility_E) sF <- MarkovState$new(states["F"], utility = utility_F) sG <- MarkovState$new(states["G"], utility = utility_G) sH <- MarkovState$new(states["H"], utility = utility_H) sI <- MarkovState$new(states["I"], utility = utility_I) States <- list(sA, sB, sC, sD, sE, sF, sG, sH, sI) # Transitions tAD <- Transition$new(sA, sD, cost = cost_A) tAC <- Transition$new(sA, sC, cost = cost_A) tAB <- Transition$new(sA, sB, cost = cost_A) tBC <- Transition$new(sB, sC) tBE <- Transition$new(sB, sE, cost = cost_E) tBF <- Transition$new(sB, sF, cost = cost_F) tBG <- Transition$new(sB, sG, cost = cost_G) tCB <- Transition$new(sC, sB) tCD <- Transition$new(sC, sD) tCF <- Transition$new(sC, sF, cost = cost_F) tCG <- Transition$new(sC, sG, cost = cost_G) tCC <- Transition$new(sC, sC) tDC <- Transition$new(sD, sC) tDB <- Transition$new(sD, sB) tDD <- Transition$new(sD, sD) tEB <- Transition$new(sE, sB) tEH <- Transition$new(sE, sH) tFB <- Transition$new(sF, sB) tFC <- Transition$new(sF, sC) tFG <- Transition$new(sF, sG, cost = cost_G) tFH <- Transition$new(sF, sH) tGB <- Transition$new(sG, sB) tGC <- Transition$new(sG, sC) tGF <- Transition$new(sG, sF, cost = cost_F) tGD <- Transition$new(sG, sD) tHE <- Transition$new(sH, sE, cost = cost_E) tHF <- Transition$new(sH, sF, cost = cost_F) tHH <- Transition$new(sH, sH) tBI <- Transition$new(sB, sI) tCI <- Transition$new(sC, sI) tDI <- Transition$new(sD, sI) tEI <- Transition$new(sE, sI) tFI <- Transition$new(sF, sI) tGI <- Transition$new(sG, sI) tHI <- Transition$new(sH, sI) tII <- Transition$new(sI, sI) # Transitions incorporating CAS cost tAD_CAS <- Transition$new(sA, sD, cost = cost_A + cost_CAS) tAC_CAS <- Transition$new(sA, sC, cost = cost_A + cost_CAS) tAB_CAS <- Transition$new(sA, sB, cost = cost_A + cost_CAS) tBE_CAS <- Transition$new(sB, sE, cost = cost_E + cost_CAS) tBF_CAS <- Transition$new(sB, sF, cost = cost_F + cost_CAS) tCF_CAS <- Transition$new(sC, sF, cost = cost_F + cost_CAS) tGF_CAS <- Transition$new(sG, sF, cost = cost_F + cost_CAS) tHE_CAS <- Transition$new(sH, sE, cost = cost_E + cost_CAS) tHF_CAS <- Transition$new(sH, sF, cost = cost_F + cost_CAS) Transitions_base <- list( tAD, tAC, tAB, tBC, tBE, tBF, tBG, tCB, tCD, tCF, tCG, tCC, tDC, tDB, tDD, tEB, tEH, tFB, tFC, tFG, tFH, tGB, tGC, tGF, tGD, tHE, tHF, tHH, tBI, tCI, tDI, tEI, tFI, tGI, tHI, tII ) Transitions_CAS <- list( tAD_CAS, tAC_CAS, tAB_CAS, tBC, tBE_CAS, tBF_CAS, tBG, tCB, tCD, tCF_CAS, tCG, tCC, tDC, tDB, tDD, tEB, tEH, tFB, tFC, tFG, tFH, tGB, tGC, tGF_CAS, tGD, tHE_CAS, tHF_CAS, tHH, tBI, tCI, tDI, tEI, tFI, tGI, tHI, tII ) ## @knitr SMM-def-point -------------------------------------------------------- SMM_base <- SemiMarkovModel$new( V = States, E = Transitions_base, tcycle = as.difftime(365.25 / 12L, units = "days"), # cycles in months discount.cost = 0.035, discount.utility = 0.035 ) SMM_CAS <- SemiMarkovModel$new( V = States, E = Transitions_CAS, tcycle = as.difftime(365.25 / 12L, units = "days"), # cycles in months discount.cost = 0.035, discount.utility = 0.035 ) ## @knitr transitions-point --------------------------------------------------- # Death p_death_all <- 0.00341 p_death_primary <- 0.00046 p_death_revision <- 0.00151 # Transitions p_AtoB <- 0.01495 p_AtoC <- 0.04285 p_AtoD <- NA # alternatively: 1 - p_AtoB - p_AtoC p_BtoC <- 0.01385 p_BtoE <- 0.02469 p_BtoF <- 0.00523 p_BtoI <- p_death_all + p_death_primary p_BtoG <- NA # alternatively: 1 - p_BtoC - p_BtoE - p_BtoF - p_BtoI p_CtoB <- 0.00921 p_CtoC <- 0.02505 p_CtoF <- 0.00250 p_CtoG <- 0.01701 p_CtoI <- p_death_all + p_death_primary p_CtoD <- NA # alternatively: 1 - p_CtoB - p_CtoC - p_CtoF - p_CtoG - p_CtoI p_DtoB <- 0.00921 p_DtoC <- 0.01385 p_DtoI <- p_death_all + p_death_primary p_DtoD <- NA # alternatively: 1 - p_DtoB - p_DtoC - p_DtoI p_EtoB <- 0.02545 p_EtoI <- p_death_all + p_death_revision p_EtoH <- NA # alternatively: 1 - p_EtoB - p_EtoI p_FtoB <- 0.01590 p_FtoC <- 0.00816 p_FtoG <- 0.01701 p_FtoI <- p_death_all + p_death_revision p_FtoH <- NA # alternatively: 1 - p_FtoB - p_FtoC - p_FtoG - p_FtoI p_GtoB <- 0.00921 p_GtoC <- 0.01385 p_GtoF <- 0.00250 p_GtoI <- p_death_all + p_death_primary p_GtoD <- NA # alternatively: 1 - p_GtoB - p_GtoC - p_GtoF - p_GtoI p_HtoE <- 0.02003 p_HtoF <- 0.01038 p_HtoI <- p_death_all + p_death_revision p_HtoH <- NA # alternatively: 1 - p_HtoE - p_HtoF - p_HtoI p_ItoI <- 1.0 # Set transition probabilities Pt <- matrix(c( 0L, p_AtoB, p_AtoC, p_AtoD, 0L, 0L, 0L, 0L, 0L, 0L, 0L, p_BtoC, 0L, p_BtoE, p_BtoF, p_BtoG, 0L, p_BtoI, 0L, p_CtoB, p_CtoC, p_CtoD, 0L, p_CtoF, p_CtoG, 0L, p_CtoI, 0L, p_DtoB, p_DtoC, p_DtoD, 0L, 0L, 0L, 0L, p_DtoI, 0L, p_EtoB, 0L, 0L, 0L, 0L, 0L, p_EtoH, p_EtoI, 0L, p_FtoB, p_FtoC, 0L, 0L, 0L, p_FtoG, p_FtoH, p_FtoI, 0L, p_GtoB, p_GtoC, p_GtoD, 0L, p_GtoF, 0L, 0L, p_GtoI, 0L, 0L, 0L, 0L, p_HtoE, p_HtoF, 0L, p_HtoH, p_HtoI, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, p_ItoI ), nrow = 9L, byrow = TRUE, dimnames = list( source = states[LETTERS[1L:9L]], target = states[LETTERS[1L:9L]] )) SMM_base$set_probabilities(Pt) ## @knitr tx-effect ----------------------------------------------------------- txeffect <- function(Pt, rr) { # copy transition matrix pr <- Pt # calculate reduced probability of transition to state B derisk <- states[["B"]] dpb <- pr[, derisk] * rr # reduce the probability of making a transition to state B and increase the # probability of making a transition elsewhere by the same amount uprisks <- c("D", "G", "D", "D", "H", "H", "D", "H", "I") for (i in 1L:9L) { s <- states[[i]] pr[[s, derisk]] <- pr[[s, derisk]] - dpb[[i]] uprisk <- states[[uprisks[[i]]]] pr[[s, uprisk]] <- pr[[s, uprisk]] + dpb[[i]] } return(pr) } ## @knitr CAS-transitions-point ------------------------------------------------ # apply CAS_effect to the transition matrix CAS_effect <- 0.34 Pt_CAS <- txeffect(Pt, CAS_effect) SMM_CAS$set_probabilities(Pt_CAS) ## @knitr cycle-point ---------------------------------------------------------- # create starting populations N <- 1000L populations <- c(N, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L) names(populations) <- states # run 120 one-month cycles for both models SMM_base$reset(populations) SMM_base_10years <- SMM_base$cycles( ncycles = 120L, hcc.pop = FALSE, hcc.cost = FALSE ) SMM_CAS$reset(populations) SMM_CAS_10years <- SMM_CAS$cycles( ncycles = 120L, hcc.pop = FALSE, hcc.cost = FALSE ) ## @knitr as-table4 ---------------------------------------------------------- # convert a Markov trace (matrix) with monthly cycles to an annual summary # matrix with cumulative values, as per Dong and Buxton, Table 4 as_table4 <- function(m_trace) { # calculate cumulative event counts m_cum <- apply(m_trace, 2L, cumsum) # create annual summary table m_t4 <- matrix( data = c( m_trace[, "Years"], m_cum[, "TKR with serious complications"] / 10L, m_cum[, "TKR with minor complications"] / 10L, m_cum[, "Complex revision"] / 10L, m_cum[, "Simple revision"] / 10L, m_trace[, "Death"] / 10L, m_cum[, "Cost"] * 1000L, m_cum[, "QALY"] * 1000L ), dimnames = list( NULL, c( "Year", "Cumulative serious complication (%)", "Cumulative minor complication (%)", "Cumulative complex revision (%)", "Cumulative simple revision (%)", "Cumulative death (%)", "Discounted costs (£)", "Discounted QALYs" ) ), nrow = 121L, ncol = 8L ) # return in table 4 format yearly <- (1L:10L) * 12L + 1L return(m_t4[yearly, ]) } ## @knitr cs-table-4 ---------------------------------------------------------- t4_CS <- as_table4(SMM_base_10years) ## @knitr --------------------------------------------------------------------- test_that("Table 4 for conventional surgery is replicated", { expect_identical(nrow(t4_CS), 10L) expect_intol( t4_CS[[10L, "Cumulative serious complication (%)"]], 87.32, tolerance = 0.2 ) expect_intol( t4_CS[[10L, "Cumulative minor complication (%)"]], 135.87, tolerance = 0.2 ) expect_intol( t4_CS[[10L, "Cumulative complex revision (%)"]], 5.13, tolerance = 0.2 ) expect_intol( t4_CS[[10L, "Cumulative simple revision (%)"]], 2.55, tolerance = 0.2 ) expect_intol( t4_CS[[10L, "Cumulative death (%)"]], 37.10, tolerance = 0.2 ) expect_intol( t4_CS[[10L, "Discounted costs (£)"]], 7791288.9, tolerance = 100000.0 ) expect_intol( t4_CS[[10L, "Discounted QALYs"]], 5526.4, tolerance = 250.0 ) }) ## @knitr cas-table-4 ---------------------------------------------------------- t4_CAS <- as_table4(SMM_CAS_10years) ## @knitr --------------------------------------------------------------------- test_that("Table 4 for computer-assisted surgery is replicated", { expect_identical(nrow(t4_CAS), 10L) expect_intol( t4_CAS[[10L, "Cumulative serious complication (%)"]], 58.14, tolerance = 0.2 ) expect_intol( t4_CAS[[10L, "Cumulative minor complication (%)"]], 136.52, tolerance = 0.2 ) expect_intol( t4_CAS[[10L, "Cumulative complex revision (%)"]], 3.56, tolerance = 0.2 ) expect_intol( t4_CAS[[10L, "Cumulative simple revision (%)"]], 1.89, tolerance = 0.2 ) expect_intol( t4_CAS[[10L, "Cumulative death (%)"]], 37.06, tolerance = 0.2 ) expect_intol( t4_CAS[[10L, "Discounted costs (£)"]], 7208671.4, tolerance = 100000.0 ) expect_intol( t4_CAS[10L, "Discounted QALYs"], 5541.2, tolerance = 250.0 ) }) ## @knitr cea ----------------------------------------------------------------- dcost <- t4_CAS[[10L, "Discounted costs (£)"]] / 1000L - t4_CS[[10L, "Discounted costs (£)"]] / 1000L dutil <- t4_CAS[[10L, "Discounted QALYs"]] / 1000L - t4_CS[[10L, "Discounted QALYs"]] / 1000L ## @knitr --------------------------------------------------------------------- test_that("Deterministic CEA matches published value", { expect_intol(dcost, -583.0, tolerance = 50.0) expect_intol(dutil, 0.0164, tolerance = 0.005) }) ## @knitr utilities-var ------------------------------------------------------ utility_A_nu <- 0.42 utility_B_nu <- 0.80 utility_C_nu <- 0.32 utility_D_nu <- 0.34 utility_E_nu <- 0.55 utility_F_nu <- 0.57 utility_G_nu <- 0.34 utility_H_nu <- 0.38 ## @knitr utilities-beta ----------------------------------------------------- utility_A_beta <- BetaModVar$new( "Utility of state A", "", utility_A * utility_A_nu, (1.0 - utility_A) * utility_A_nu ) utility_B_beta <- BetaModVar$new( "Utility of state B", "", utility_B * utility_B_nu, (1.0 - utility_B) * utility_B_nu ) utility_C_beta <- BetaModVar$new( "Utility of state C", "", utility_C * utility_C_nu, (1.0 - utility_C) * utility_C_nu ) utility_D_beta <- BetaModVar$new( "Utility of state D", "", utility_D * utility_D_nu, (1.0 - utility_D) * utility_D_nu ) utility_E_beta <- BetaModVar$new( "Utility of state E", "", utility_E * utility_E_nu, (1.0 - utility_E) * utility_E_nu ) utility_F_beta <- BetaModVar$new( "Utility of state F", "", utility_F * utility_F_nu, (1.0 - utility_F) * utility_F_nu ) utility_G_beta <- BetaModVar$new( "Utility of state G", "", utility_G * utility_G_nu, (1.0 - utility_G) * utility_G_nu ) utility_H_beta <- BetaModVar$new( "Utility of state H", "", utility_H * utility_H_nu, (1.0 - utility_H) * utility_H_nu ) ## @knitr costs-gamma -------------------------------------------------------- cost_A_stdev <- (6217L - 4218L) / (2L * 1.96) cost_E_stdev <- (11307L - 5086L) / (2L * 1.96) cost_F_stdev <- (7972L - 5043L) / (2L * 1.96) cost_G_stdev <- (5579L - 1428L) / (2L * 1.96) cost_A_gamma <- GammaModVar$new( "Cost of state A", "", cost_A ^ 2L / cost_A_stdev ^ 2L, cost_A_stdev ^ 2L / cost_A ) cost_E_gamma <- GammaModVar$new( "Cost of state E", "", cost_E ^ 2L / cost_E_stdev ^ 2L, cost_E_stdev ^ 2L / cost_E ) cost_F_gamma <- GammaModVar$new( "Cost of state F", "", cost_F ^ 2L / cost_F_stdev ^ 2L, cost_F_stdev ^ 2L / cost_F ) cost_G_gamma <- GammaModVar$new( "Cost of state G", "", cost_G ^ 2L / cost_G_stdev ^ 2L, cost_G_stdev ^ 2L / cost_G ) ## @knitr cas-cost-gamma ------------------------------------------------------ cost_CAS_stdev <- 4L * cost_A_stdev / cost_A * cost_CAS cost_CAS_gamma <- GammaModVar$new( "Cost of CAS", "", cost_CAS ^ 2L / cost_CAS_stdev ^ 2L, cost_CAS_stdev ^ 2L / cost_CAS ) cost_A_CAS <- ExprModVar$new( "Cost of state A with CAS", "", rlang::quo(cost_A_gamma + cost_CAS_gamma) ) cost_E_CAS <- ExprModVar$new( "Cost of state E with CAS", "", rlang::quo(cost_E_gamma + cost_CAS_gamma) ) cost_F_CAS <- ExprModVar$new( "Cost of state F with CAS", "", rlang::quo(cost_F_gamma + cost_CAS_gamma) ) ## @knitr cas-lognorm --------------------------------------------------------- CAS_effect_mean <- 0.34 CAS_effect_sd <- 1.25 CAS_effect_lognorm <- LogNormModVar$new( "Effect of CAS", "", log(CAS_effect_mean), log(CAS_effect_sd) ) ## @knitr SMM-PSA ------------------------------------------------------------- # Markov states as Beta distributions sA_PSA <- MarkovState$new(states["A"], utility = utility_A_beta) sB_PSA <- MarkovState$new(states["B"], utility = utility_B_beta) sC_PSA <- MarkovState$new(states["C"], utility = utility_C_beta) sD_PSA <- MarkovState$new(states["D"], utility = utility_D_beta) sE_PSA <- MarkovState$new(states["E"], utility = utility_E_beta) sF_PSA <- MarkovState$new(states["F"], utility = utility_F_beta) sG_PSA <- MarkovState$new(states["G"], utility = utility_G_beta) sH_PSA <- MarkovState$new(states["H"], utility = utility_H_beta) # state I has no uncertainty associated with it, so a probabilistic # representation is not required States_PSA <- list( sA_PSA, sB_PSA, sC_PSA, sD_PSA, sE_PSA, sF_PSA, sG_PSA, sH_PSA, sI ) # Transition costs as Gamma distributions tAD_PSA <- Transition$new(sA_PSA, sD_PSA, cost = cost_A_gamma) tAC_PSA <- Transition$new(sA_PSA, sC_PSA, cost = cost_A_gamma) tAB_PSA <- Transition$new(sA_PSA, sB_PSA, cost = cost_A_gamma) tBC_PSA <- Transition$new(sB_PSA, sC_PSA) tBE_PSA <- Transition$new(sB_PSA, sE_PSA, cost = cost_E_gamma) tBF_PSA <- Transition$new(sB_PSA, sF_PSA, cost = cost_F_gamma) tBG_PSA <- Transition$new(sB_PSA, sG_PSA, cost = cost_G_gamma) tCB_PSA <- Transition$new(sC_PSA, sB_PSA) tCD_PSA <- Transition$new(sC_PSA, sD_PSA) tCF_PSA <- Transition$new(sC_PSA, sF_PSA, cost = cost_F_gamma) tCG_PSA <- Transition$new(sC_PSA, sG_PSA, cost = cost_G_gamma) tCC_PSA <- Transition$new(sC_PSA, sC_PSA) tDC_PSA <- Transition$new(sD_PSA, sC_PSA) tDB_PSA <- Transition$new(sD_PSA, sB_PSA) tDD_PSA <- Transition$new(sD_PSA, sD_PSA) tEB_PSA <- Transition$new(sE_PSA, sB_PSA) tEH_PSA <- Transition$new(sE_PSA, sH_PSA) tFB_PSA <- Transition$new(sF_PSA, sB_PSA) tFC_PSA <- Transition$new(sF_PSA, sC_PSA) tFG_PSA <- Transition$new(sF_PSA, sG_PSA, cost = cost_G_gamma) tFH_PSA <- Transition$new(sF_PSA, sH_PSA) tGB_PSA <- Transition$new(sG_PSA, sB_PSA) tGC_PSA <- Transition$new(sG_PSA, sC_PSA) tGF_PSA <- Transition$new(sG_PSA, sF_PSA, cost = cost_F_gamma) tGD_PSA <- Transition$new(sG_PSA, sD_PSA) tHE_PSA <- Transition$new(sH_PSA, sE_PSA, cost = cost_E_gamma) tHF_PSA <- Transition$new(sH_PSA, sF_PSA, cost = cost_F_gamma) tHH_PSA <- Transition$new(sH_PSA, sH_PSA) tBI_PSA <- Transition$new(sB_PSA, sI) tCI_PSA <- Transition$new(sC_PSA, sI) tDI_PSA <- Transition$new(sD_PSA, sI) tEI_PSA <- Transition$new(sE_PSA, sI) tFI_PSA <- Transition$new(sF_PSA, sI) tGI_PSA <- Transition$new(sG_PSA, sI) tHI_PSA <- Transition$new(sH_PSA, sI) # transition I to I also has no probabilistic elements # Transitions incorporating CAS cost tAD_CAS_PSA <- Transition$new(sA_PSA, sD_PSA, cost = cost_A_CAS) tAC_CAS_PSA <- Transition$new(sA_PSA, sC_PSA, cost = cost_A_CAS) tAB_CAS_PSA <- Transition$new(sA_PSA, sB_PSA, cost = cost_A_CAS) tBE_CAS_PSA <- Transition$new(sB_PSA, sE_PSA, cost = cost_E_CAS) tBF_CAS_PSA <- Transition$new(sB_PSA, sF_PSA, cost = cost_F_CAS) tCF_CAS_PSA <- Transition$new(sC_PSA, sF_PSA, cost = cost_F_CAS) tGF_CAS_PSA <- Transition$new(sG_PSA, sF_PSA, cost = cost_F_CAS) tHE_CAS_PSA <- Transition$new(sH_PSA, sE_PSA, cost = cost_E_CAS) tHF_CAS_PSA <- Transition$new(sH_PSA, sF_PSA, cost = cost_F_CAS) Transitions_base_PSA <- list( tAD_PSA, tAC_PSA, tAB_PSA, tBC_PSA, tBE_PSA, tBF_PSA, tBG_PSA, tBI_PSA, tCB_PSA, tCD_PSA, tCF_PSA, tCG_PSA, tCC_PSA, tCI_PSA, tDC_PSA, tDB_PSA, tDD_PSA, tDI_PSA, tEB_PSA, tEH_PSA, tEI_PSA, tFB_PSA, tFC_PSA, tFG_PSA, tFH_PSA, tFI_PSA, tGB_PSA, tGC_PSA, tGF_PSA, tGD_PSA, tGI_PSA, tHE_PSA, tHF_PSA, tHH_PSA, tHI_PSA, tII ) Transitions_CAS_PSA <- list( tAD_CAS_PSA, tAC_CAS_PSA, tAB_CAS_PSA, tBC_PSA, tBE_CAS_PSA, tBF_CAS_PSA, tBG_PSA, tBI_PSA, tCB_PSA, tCD_PSA, tCF_CAS_PSA, tCG_PSA, tCC_PSA, tCI_PSA, tDC_PSA, tDB_PSA, tDD_PSA, tDI_PSA, tEB_PSA, tEH_PSA, tEI_PSA, tFB_PSA, tFC_PSA, tFG_PSA, tFH_PSA, tFI_PSA, tGB_PSA, tGC_PSA, tGF_CAS_PSA, tGD_PSA, tGI_PSA, tHE_CAS_PSA, tHF_CAS_PSA, tHH_PSA, tHI_PSA, tII ) SMM_base_PSA <- SemiMarkovModel$new( V = States_PSA, E = Transitions_base_PSA, tcycle = as.difftime(365.25 / 12L, units = "days"), # cycles in months discount.cost = 0.035, discount.utility = 0.035 ) SMM_CAS_PSA <- SemiMarkovModel$new( V = States_PSA, E = Transitions_CAS_PSA, tcycle = as.difftime(365.25 / 12L, units = "days"), # cycles in months discount.cost = 0.035, discount.utility = 0.035 ) ## @knitr fun-dirichlet ------------------------------------------------------- dirichletify <- function(Pt, population = 1L) { # check argument stopifnot( is.matrix(Pt), is.numeric(Pt), nrow(Pt) == ncol(Pt), all(dimnames(Pt)[[2L]] == dimnames(Pt)[[1L]]) ) nNA <- rowSums(is.na(Pt)) sumP <- rowSums(Pt, na.rm = TRUE) # check if a count or proportion representation is_count <- any(Pt > 1.0, na.rm = TRUE) if (is_count) { # counts cannot have NAs stopifnot(all(nNA == 0L)) # normalise into proportions Pt <- Pt / rowSums(Pt) } else { # proportions can have NA values, but only 1/row stopifnot(all(nNA <= 1L)) # store information about which variable was set as NA whichNA <- apply(Pt, 1L, function(row) which(is.na(row))) # populate missing values to a total of 1 for (row in names(nNA)[nNA > 0L]) { Pt[row, whichNA[[row]]] <- 1.0 - sumP[row] } } # build state-wise Dirichlet distributions for (r in seq_len(nrow(Pt))) { non0 <- which(Pt[r, ] != 0.0) # if multiple outgoing transitions are possible, model as Dirichlet if (length(non0) > 1L) { dist <- DirichletDistribution$new(Pt[r, non0] * population) dist$sample() # randomise Pt[r, non0] <- dist$r() } # if only 1 transition is possible, leave as given originally } return(Pt) } ## @knitr cycle-PSA ----------------------------------------------------------- nruns <- 250L t4_CS_PSA <- array( dim = c(10L, ncol(t4_CS), nruns), dimnames = list(NULL, colnames(t4_CS), NULL) ) t4_CAS_PSA <- array( dim = c(10L, ncol(t4_CS), nruns), dimnames = list(NULL, colnames(t4_CAS), NULL) ) for (run in seq_len(nruns)) { # reset populations SMM_base_PSA$reset(populations) SMM_CAS_PSA$reset(populations) # find unique modvars and randomise them mv <- unique(c( SMM_base_PSA$modvars(), SMM_CAS_PSA$modvars(), CAS_effect_lognorm )) for (m in mv) { m$set("random") } # set the transition matrix, applying the CAS effect for CAS model pt_cs <- dirichletify(Pt, population = 1000L) SMM_base_PSA$set_probabilities(pt_cs) pt_cas <- txeffect(pt_cs, CAS_effect_lognorm$get()) SMM_CAS_PSA$set_probabilities(pt_cas) # cycle the CS model mtrace <- SMM_base_PSA$cycles( ncycles = 120L, hcc.pop = FALSE, hcc.cost = FALSE ) t4 <- as_table4(as.matrix(mtrace)) t4_CS_PSA[, , run] <- t4 # cycle the CAS model mtrace <- SMM_CAS_PSA$cycles( ncycles = 120L, hcc.pop = FALSE, hcc.cost = FALSE ) t4 <- as_table4(as.matrix(mtrace)) t4_CAS_PSA[, , run] <- t4 } ## @knitr --------------------------------------------------------------------- test_that("Table 4 for conventional surgery is replicated by mean of PSA", { # skip on CRAN skip_on_cran() # Test that the range of the PSA estimates includes the expected value for # seven outcomes. This is a crude test of functionality. Statistical tests, # such as a one sample t-test, are not much help here because the shape of # the distribution of model results may be non-normal, and the type 1 error # rate is likely to be higher than suggested by the p-value. fields <- c( "Cumulative serious complication (%)", "Cumulative minor complication (%)", "Cumulative complex revision (%)", "Cumulative simple revision (%)", "Cumulative death (%)", "Discounted costs (£)", "Discounted QALYs" ) for (f in fields) { r <- range(t4_CS_PSA[10L, f, ]) e <- t4_CS[[10L, f]] expect_between(e, r[[1L]], r[[2L]]) } }) ## @knitr --------------------------------------------------------------------- test_that("Table 4 for computer-assisted surgery is replicated by mean PSA", { # skip on CRAN and set wide tolerance skip_on_cran() # Test that the range of the PSA estimates includes the expected value for # seven outcomes. This is a crude test of functionality. Statistical tests, # such as a one sample t-test, are not much help here because the shape of # the distribution of model results may be non-normal, and the type 1 error # rate is likely to be higher than suggested by the p-value. fields <- c( "Cumulative serious complication (%)", "Cumulative minor complication (%)", "Cumulative complex revision (%)", "Cumulative simple revision (%)", "Cumulative death (%)", "Discounted costs (£)", "Discounted QALYs" ) for (f in fields) { r <- range(t4_CAS_PSA[10L, f, ]) e <- t4_CAS[[10L, f]] expect_between(e, r[[1L]], r[[2L]]) } }) ## @knitr t5-CS-PSA ---------------------------------------------------------- fields <- c( "Cumulative serious complication (%)", "Cumulative complex revision (%)", "Cumulative simple revision (%)" ) t5_CS <- matrix( data = NA_real_, nrow = length(fields), ncol = 4L, dimnames = list(fields, c("Mean", "SD", "Q2.5", "Q97.5")) ) for (f in fields) { t5_CS[[f, "Mean"]] <- mean(t4_CS_PSA[10L, f, ]) t5_CS[[f, "SD"]] <- sd(t4_CS_PSA[10L, f, ]) t5_CS[[f, "Q2.5"]] <- quantile(t4_CS_PSA[10L, f, ], probs = 0.025) t5_CS[[f, "Q97.5"]] <- quantile(t4_CS_PSA[10L, f, ], probs = 0.975) } ## @knitr t5-CAS-PSA ---------------------------------------------------------- fields <- c( "Cumulative serious complication (%)", "Cumulative complex revision (%)", "Cumulative simple revision (%)" ) t5_CAS <- matrix( data = NA_real_, nrow = length(fields), ncol = 4L, dimnames = list(fields, c("Mean", "SD", "Q2.5", "Q97.5")) ) for (f in fields) { t5_CAS[[f, "Mean"]] <- mean(t4_CAS_PSA[10L, f, ]) t5_CAS[[f, "SD"]] <- sd(t4_CAS_PSA[10L, f, ]) t5_CAS[[f, "Q2.5"]] <- quantile(t4_CAS_PSA[10L, f, ], probs = 0.025) t5_CAS[[f, "Q97.5"]] <- quantile(t4_CAS_PSA[10L, f, ], probs = 0.975) } ## @knitr cea-psa -------------------------------------------------------------- dcost_psa <- t4_CAS_PSA[10L, "Discounted costs (£)", ] / 1000L - t4_CS_PSA[10L, "Discounted costs (£)", ] / 1000L dutil_psa <- t4_CAS_PSA[10L, "Discounted QALYs", ] / 1000L - t4_CS_PSA[10L, "Discounted QALYs", ] / 1000L icer_psa <- dcost_psa / dutil_psa ## @knitr --------------------------------------------------------------------- test_that("PSA CEA matches deterministic calculation", { r <- range(dcost_psa) expect_between(dcost, r[[1L]], r[[2L]]) r <- range(dutil_psa) expect_between(dutil, r[[1L]], r[[2L]]) })