test_that("illegal initializations are rejected", { expect_silent(NormModVar$new("norm", "GBP", 0.0, 1.0)) expect_error( NormModVar$new(42L, 42L, 0.0, 1.0), class = "description_not_string" ) expect_error( NormModVar$new("norm", 42L, 0.0, 1.0), class = "units_not_string" ) expect_error( NormModVar$new("norm", "GBP", "0", 1.0), class = "mu_not_numeric" ) expect_error( NormModVar$new("norm", "GBP", 0.0, "1"), class = "sigma_not_numeric" ) }) test_that("properties are correct", { sn <- NormModVar$new("sn", "GBP", 0.0, 1.0) expect_false(sn$is_expression()) expect_true(sn$is_probabilistic()) }) test_that("modvar has correct distribution name", { sn <- NormModVar$new("sn", "GBP", 0.0, 1.0) expect_identical(sn$distribution(), "N(0,1)") n <- NormModVar$new("n", "GBP", 42.0, 1.0) expect_identical(n$distribution(), "N(42,1)") }) test_that("quantile function checks inputs", { x <- NormModVar$new("x", "GBP", 0.0, 1.0) probs <- c(0.1, 0.2, 0.5) expect_silent(x$quantile(probs)) probs <- c(0.1, NA, 0.5) expect_error(x$quantile(probs), class = "probs_not_defined") probs <- c(0.1, "boo", 0.5) expect_error(x$quantile(probs), class = "probs_not_numeric") probs <- c(0.1, 0.4, 1.5) expect_error(x$quantile(probs), class = "probs_out_of_range") probs <- c(0.1, 0.2, 0.5) expect_length(x$quantile(probs), 3L) }) test_that("pe, mean, sd and quantiles are returned correctly", { sn <- NormModVar$new("sn", "GBP", 0.0, 1.0) expect_identical(sn$mean(), 0.0) expect_identical(sn$SD(), 1.0) probs <- c(0.025, 0.975) q <- sn$quantile(probs) expect_identical(round(q[[1L]], 2L), -1.96, 0.05) expect_identical(round(q[[2L]], 2L), 1.96, 0.05) }) test_that("random sampling is from a Normal disribution", { mu <- 0.0 sigma <- 1.0 sn <- NormModVar$new("sn", "GBP", mu, sigma) n <- 1000L samp <- vapply(seq_len(n), FUN.VALUE = 1.0, FUN = function(i) { sn$set("random") rv <- sn$get() return(rv) }) expect_length(samp, n) # check sample mean and sd are within 99.9% CI based on CLT; this is exact # for a normal, and is expected to fail for 0.1% of tests; skip for CRAN skip_on_cran() ht <- ks.test(samp, rnorm(n, mean = mu, sd = sigma)) expect_gt(ht$p.value, 0.001) }) test_that("First call to get() returns mean", { sn <- NormModVar$new("sn", "GBP", 0.0, 1.0) expect_identical(sn$get(), 0.0) }) test_that("variable passing and persistency of get and set are correct", { f <- function(mv) { expect_equal(mv$get(), 0.0) mv$set("q2.5") } g <- function(mv) { expect_identical(mv$get(), 0.0) } sn <- NormModVar$new("sn", "GBP", 0.0, 1.0) f(sn) expect_false(sn$get() == 0.0) sn$set("expected") g(sn) })