test_that("illegal initializations are rejected", { a <- 2L b <- 5L expect_silent(BetaDistribution$new(a, b)) expect_error(BetaDistribution$new("9", b), class = "alpha_not_numeric") expect_error(BetaDistribution$new(a, "0.5"), class = "beta_not_numeric") expect_error(BetaDistribution$new(-1L, b), class = "alpha_not_supported") expect_error(BetaDistribution$new(a, 0L), class = "beta_not_supported") }) test_that("the correct distribution name is created", { a <- 2L b <- 5L B <- BetaDistribution$new(a, b) expect_identical(B$distribution(), "Be(2,5)") }) test_that("mean, mode, sd and quantiles are returned correctly", { alpha <- 2L beta <- 5L b <- BetaDistribution$new(alpha, beta) m <- alpha / (alpha + beta) v <- (alpha * beta) / ((alpha + beta + 1L) * (alpha + beta) ^ 2L) o <- (alpha - 1L) / (alpha + beta - 2L) expect_intol(b$mean(), m, 0.01) expect_intol(b$SD(), sqrt(v), 0.01) expect_intol(b$mode(), o, 0.01) probs <- c(0.025, 0.975) q <- b$quantile(probs) expect_intol(q[1L], 0.043, 0.01) expect_intol(q[2L], 0.641, 0.01) }) test_that("quantile function checks inputs and has correct output", { alpha <- 2L beta <- 5L b <- BetaDistribution$new(alpha, beta) probs <- c(0.1, 0.2, 0.5) expect_silent(b$quantile(probs)) probs <- c(0.1, NA, 0.5) expect_error(b$quantile(probs), class = "probs_not_defined") probs <- c(0.1, "boo", 0.5) expect_error(b$quantile(probs), class = "probs_not_numeric") probs <- c(0.1, 0.4, 1.5) expect_error(b$quantile(probs), class = "probs_out_of_range") probs <- c(0.1, 0.2, 0.5) q <- b$quantile(probs) expect_length(q, 3L) expect_setequal(names(q), c("0.1", "0.2", "0.5")) }) test_that("Extreme mode values are defined", { alpha <- 1L beta <- 1L b <- BetaDistribution$new(alpha, beta) expect_equal(b$mode(), 0.5) alpha <- 0.5 beta <- 0.5 b <- BetaDistribution$new(alpha, beta) expect_true(is.na(b$mode())) alpha <- 0.5 beta <- 1.5 b <- BetaDistribution$new(alpha, beta) expect_intol(b$mode(), 0.0, 0.01) alpha <- 1.5 beta <- 0.5 b <- BetaDistribution$new(alpha, beta) expect_intol(b$mode(), 1.0, 0.01) }) test_that("random sampling is from a Beta distribution", { # create distribution alpha <- 2L beta <- 5L b <- BetaDistribution$new(alpha, beta) # sample mean b$sample(TRUE) expect_intol(b$r(), 2.0 / 7.0, 0.01) # random sampling n <- 1000L osamp <- vapply(seq(n), FUN.VALUE = 1.0, FUN = function(i) { b$sample() rv <- b$r() return(rv) }) expect_length(osamp, n) # 99.9% confidence limits; expected test failure rate is 0.1%, # skip for CRAN skip_on_cran() esamp <- rbeta(n, shape1 = alpha, shape2 = beta) ht <- ks.test(osamp, esamp) expect_gt(ht$p.value, 0.001) })