suppressPackageStartupMessages({ library(dplyr) library(testthat) library(tibble) }) ld_2_list <- function(ld) { vars <- c( "visits", "is_mar", "data", "ids", "group", "indexes", "vars", "strata", "strategies", "strategy_lock", "values", "ice_visit_index", "is_missing", "is_post_ice" ) assert_that( all(vars %in% names(ld)) ) HOLD <- lapply(vars, function(x, ld) ld[[x]], ld = ld) names(HOLD) <- vars return(HOLD) } get_ld <- function() { n <- 4 nv <- 3 covars <- tibble( subjid = 1:n, age = rnorm(n), group = factor(sample(c("A", "B"), size = n, replace = TRUE), levels = c("A", "B")), sex = factor(sample(c("M", "F"), size = n, replace = TRUE), levels = c("M", "F")), strata = c("A", "A", "A", "B") ) dat <- tibble( subjid = rep.int(1:n, nv) ) %>% left_join(covars, by = "subjid") %>% mutate(outcome = rnorm( n(), age * 3 + (as.numeric(sex) - 1) * 3 + (as.numeric(group) - 1) * 4, sd = 3 )) %>% arrange(subjid) %>% group_by(subjid) %>% mutate(visit = factor(paste0("Visit ", seq_len(n())))) %>% ungroup() %>% mutate(subjid = factor(subjid)) dat[c(1, 2, 3, 4, 6, 7), "outcome"] <- NA vars <- set_vars( outcome = "outcome", visit = "visit", subjid = "subjid", group = "group", strata = "strata", covariates = c("sex", "age"), strategy = "strategy" ) ld <- longDataConstructor$new( data = dat, vars = vars ) return(list(ld = ld, dat = dat, n = n, nv = nv)) } get_data <- function(n) { sigma <- as_vcov(c(2, 1, 0.7), c(0.5, 0.3, 0.2)) set.seed(1518) dat <- get_sim_data(n, sigma, trt = 8) %>% mutate(is_miss = rbinom(n(), 1, 0.5)) %>% mutate(outcome = if_else(is_miss == 1 & visit == "visit_3", NA_real_, outcome)) %>% select(-is_miss) %>% mutate(group = factor(group, labels = c("Placebo", "TRT"))) dat_ice <- dat %>% group_by(id) %>% arrange(id, visit) %>% filter(is.na(outcome)) %>% slice(1) %>% ungroup() %>% select(id, visit) %>% mutate(strategy = "JR") vars <- set_vars( outcome = "outcome", group = "group", strategy = "strategy", subjid = "id", visit = "visit", covariates = c("age", "sex", "visit * group") ) list(dat = dat, dat_ice = dat_ice, vars = vars) } test_that("longData - Basics", { set.seed(123) dobj <- get_ld() ld <- dobj$ld dat <- dobj$dat subject_names <- as.character(unique(dat$subjid)) expect_equal(names(ld$is_mar), subject_names) expect_equal(names(ld$is_missing), subject_names) expect_equal(ld$ids, subject_names) expect_equal(ld$visits, levels(dat$visit)) expect_length(ld$strata, length(unique(dat$subjid))) expect_equal( unlist(ld$is_missing, use.names = FALSE), c( TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE ) ) expect_equal( unlist(ld$is_mar, use.names = FALSE), rep(TRUE, dobj$n * dobj$nv) ) }) test_that("longData - Sampling", { set.seed(145) dobj <- get_ld() ld <- dobj$ld dat <- dobj$dat set.seed(101) samps <- replicate( n = 1000, ld$sample_ids() ) expect_true("1" %in% samps[1, ]) expect_true("2" %in% samps[1, ]) expect_true("3" %in% samps[1, ]) ## Subject "4" is the only subject in their strata so they must be sampled expect_true(all(samps[4, ] == "4")) ### Looking to see that re-sampling is working i.e. samples contain duplicates expect_true(any(apply(samps, 2, function(x) length(unique(x))) %in% c(1, 2))) expect_error( ld$get_data("-1231"), "subjids are not in self" ) x <- ld$get_data(c("1", "1", "3")) y <- bind_rows( dat %>% filter(subjid == "1"), dat %>% filter(subjid == "1"), dat %>% filter(subjid == "3") ) expect_equal( select(x, -subjid), select(y, -subjid) %>% as.data.frame() ) expect_true(all(x$subjid != y$subjid)) imputes <- imputation_df( imputation_single(id = "1", values = c(1, 2, 3)), imputation_single(id = "4", values = c()), imputation_single(id = "1", values = c(4, 5, 6)), imputation_single(id = "2", values = c(7, 8)) ) x <- ld$get_data(imputes) pt2_val <- dat %>% filter(subjid == "2") %>% pull(outcome) pt2_val[is.na(pt2_val)] <- c(7, 8) y <- bind_rows( dat %>% filter(subjid == "1") %>% mutate(outcome = c(1, 2, 3)), dat %>% filter(subjid == "4"), dat %>% filter(subjid == "1") %>% mutate(outcome = c(4, 5, 6)), dat %>% filter(subjid == "2") %>% mutate(outcome = pt2_val) ) expect_equal( select(x, -subjid), select(y, -subjid) %>% as.data.frame() ) expect_true(all(x$subjid != y$subjid)) x <- ld$get_data(c("1", "1", "1", "2"), na.rm = TRUE) pt2_val <- dat %>% filter(subjid == "2") %>% pull(outcome) y <- bind_rows( dat %>% filter(subjid == "1"), dat %>% filter(subjid == "1"), dat %>% filter(subjid == "1"), dat %>% filter(subjid == "2"), ) %>% filter(!is.na(outcome)) expect_equal( select(x, -subjid), select(y, -subjid) %>% as.data.frame() ) expect_true(all(x$subjid != y$subjid)) ilist <- imputation_df( imputation_single(id = "1", values = c(1, 2)), imputation_single(id = "2", values = c(1, 2, 3)) ) expect_error( ld$get_data(ilist), "Number of missing values doesn't equal" ) expect_error( ld$get_data(imputation_df(ilist[1])), "Number of missing values doesn't equal" ) expect_error( ld$get_data(imputation_df(ilist[2])), "Number of missing values doesn't equal" ) }) test_that("Stratification works as expected", { set.seed(102) dobj <- get_data(50) dat <- dobj$dat dat_ice <- dobj$dat_ice vars <- dobj$vars vars$strata <- "group" ld <- longDataConstructor$new(dat, vars) real <- dat %>% group_by(group) %>% tally() for (i in 1:20) { sampled <- ld$get_data(ld$sample_ids()) %>% group_by(group) %>% tally() expect_equal(real, sampled) } vars$strata <- c("group", "sex") ld <- longDataConstructor$new(dat, vars) real <- dat %>% group_by(group, sex) %>% tally() for (i in 1:20) { sampled <- ld$get_data(ld$sample_ids()) %>% group_by(group, sex) %>% tally() expect_equal(real, sampled) } }) test_that("Group is a stratification variable by default", { set.seed(5176) dobj <- get_data(60) dat <- dobj$dat dat_ice <- dobj$dat_ice vars <- set_vars( subjid = "id", visit = "visit", outcome = "outcome", group = "group", strategy = "strategy" ) ld <- longDataConstructor$new(dat, vars) expect_equal(ld$vars$strata, "group") real <- dat %>% group_by(group) %>% tally() for (i in 1:20) { sampled <- ld$get_data(ld$sample_ids()) %>% group_by(group) %>% tally() expect_equal(real, sampled) } vars <- set_vars( subjid = "id", visit = "visit", outcome = "outcome", group = "sex", strategy = "strategy" ) ld <- longDataConstructor$new(dat, vars) expect_equal(ld$vars$strata, "sex") real <- dat %>% group_by(sex) %>% tally() for (i in 1:20) { sampled <- ld$get_data(ld$sample_ids()) %>% group_by(sex) %>% tally() expect_equal(real, sampled) } }) test_that("Strategies", { set.seed(178) dobj <- get_ld() ld <- dobj$ld dat <- dobj$dat expect_equal( unlist(ld$strategies, use.names = FALSE), rep("MAR", dobj$n) ) expect_equal( unlist(ld$ice_visit_index, use.names = FALSE), rep(4, dobj$n) ) dat_ice <- tribble( ~visit, ~subjid, ~strategy, "Visit 1", "1", "ABC", "Visit 2", "2", "MAR", "Visit 3", "3", "XYZ" ) ld$set_strategies(dat_ice) expect_equal( unlist(ld$strategies, use.names = FALSE), c("ABC", "MAR", "XYZ", "MAR") ) expect_equal( unlist(ld$strategy_lock, use.names = FALSE), c(FALSE, TRUE, TRUE, FALSE) ) expect_equal( unlist(ld$is_mar, use.names = FALSE), c( FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE ) ) expect_equal( unlist(ld$ice_visit_index, use.names = FALSE), c(1, 2, 3, 4) ) dat_ice <- tribble( ~subjid, ~strategy, "1", "ABC", "2", "MAR", "3", "ABC" ) ld$update_strategies(dat_ice) expect_equal( unlist(ld$ice_visit_index, use.names = FALSE), c(1, 2, 3, 4) ) expect_equal( unlist(ld$is_mar, use.names = FALSE), c( FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE ) ) expect_equal( unlist(ld$strategies, use.names = FALSE), c("ABC", "MAR", "ABC", "MAR") ) dat_ice <- tribble( ~visit, ~subjid, ~strategy, "Visit 1", "2", "ABC", ) expect_error( ld$update_strategies(dat_ice), "MAR to non-MAR is invalid" ) dat_ice <- tribble( ~subjid, ~strategy, "3", "MAR", ) expect_warning( ld$update_strategies(dat_ice), "from non-MAR to MAR" ) # Ensure that only 1 warning is issued when converting non-MAR to MAR data dat_ice <- tribble( ~visit, ~subjid, ~strategy, "Visit 1", "1", "ABC", "Visit 1", "2", "ABC", "Visit 3", "3", "XYZ" ) ld$set_strategies(dat_ice) upd_dat_ice <- tribble( ~subjid, ~strategy, "2", "MAR", "3", "MAR", ) recorded_result <- record(ld$update_strategies(upd_dat_ice)) expect_length(recorded_result$warnings, 1) expect_length(recorded_result$errors, 0) expect_true(grepl("Updating strategies from non-MAR to MAR", recorded_result$warnings)) }) test_that("strategies part 2", { # Here we check to see that using `update_strategies` only updates the strategy and not # the visits (or anything else for that matter) set.seed(987) dobj <- get_ld() ld <- dobj$ld dat <- dobj$dat dat_ice <- tribble( ~visit, ~subjid, ~strategy, "Visit 1", "1", "ABC", "Visit 2", "2", "MAR", "Visit 3", "3", "XYZ" ) ld$set_strategies(dat_ice) pre_update_ld <- ld_2_list(ld) dat_ice <- tribble( ~subjid, ~strategy, ~visit, "1", "ABC", "Visit 2", "2", "MAR", "Visit 7", "3", "XYZ", "Visit 1" ) ld$update_strategies(dat_ice) expect_equal(ld_2_list(ld), pre_update_ld) dat_ice <- tribble( ~subjid, ~strategy, ~visit, "1", "LKJ", "Visit 2", "2", "MAR", "Visit 7", "3", "XYZ", "Visit 1" ) ld$update_strategies(dat_ice) expect_equal( ld$is_mar, pre_update_ld$is_mar ) expect_equal( ld$ice_visit_index, pre_update_ld$ice_visit_index ) expect_equal( unlist(ld$strategies, use.names = FALSE), c("LKJ", "MAR", "XYZ", "MAR") ) #### Show that not setting an ICE doesn't affect the ice_visit_index dobj <- get_ld() ld <- dobj$ld dat <- dobj$dat ld$set_strategies() dat_ice <- tribble( ~subjid, ~strategy, ~visit, "1", "LKJ", "Visit 2", "2", "MAR", "Visit 7", "3", "XYZ", "Visit 1" ) ld$update_strategies(dat_ice) expect_equal( unlist(ld$ice_visit_index, use.names = FALSE), c(4, 4, 4, 4) ) expect_equal( unlist(ld$strategies, use.names = FALSE), c("LKJ", "MAR", "XYZ", "MAR") ) }) test_that("sample_ids", { set.seed(101) x <- sample_ids(c(1, 2, 3)) set.seed(101) y <- sample_ids(c(1, 2, 3)) set.seed(7) z <- sample_ids(c(1, 2, 3)) expect_equal(x, y) expect_true(all(x %in% c(1, 2, 3))) expect_true(all(z %in% c(1, 2, 3))) expect_length(x, 3) expect_length(y, 3) expect_length(z, 3) set.seed(200) samps <- replicate( n = 10000, sample_ids(c(1, 2, 3)) ) ### Looking to see that re-sampling is working i.e. samples contain duplicates expect_true(any(apply(samps, 2, function(x) length(unique(x))) %in% c(1, 2))) ### Assuming random sampling the mean should converge to ~2 samps_mean <- apply(samps, 1, mean) expect_true(all(samps_mean >= 1.95 & samps_mean <= 2.05)) }) test_that("as_strata", { expect_equal(as_strata(c(1, 2, 3), c(1, 2, 3)), c(1, 2, 3)) expect_equal(as_strata(c(1, 1, 2), c(5, 5, 6)), c(1, 1, 2)) expect_equal(as_strata(c(1, 1, 1), c("a", "a", "a")), c(1, 1, 1)) expect_equal(as_strata(c("a", "b", "c"), c("a", "a", "a")), c(1, 2, 3)) expect_equal(as_strata(c("a", "a", "c"), c("a", "a", "a")), c(1, 1, 2)) }) test_that("idmap", { # The idmap option provides a mapping vectoring linking new_ids to old_ids set.seed(654) dobj <- get_ld() ld <- dobj$ld dat <- dobj$dat x <- ld$get_data(c("1", "1", "3"), idmap = TRUE) expect_equal( attr(x, "idmap"), c("new_pt_1" = "1", "new_pt_2" = "1", "new_pt_3" = "3") ) x <- ld$get_data(c("1", "1", "3"), idmap = TRUE, na.rm = TRUE) expect_equal( attr(x, "idmap"), c("new_pt_1" = "1", "new_pt_2" = "1", "new_pt_3" = "3") ) imps <- imputation_df(list( imputation_single(id = "1", values = c(1, 2, 3)), imputation_single(id = "3", values = c(4)), imputation_single(id = "3", values = 5) )) x <- ld$get_data(imps, idmap = TRUE) expect_equal( attr(x, "idmap"), c("new_pt_1" = "1", "new_pt_2" = "3", "new_pt_3" = "3") ) }) test_that("longdata can handle data that isn't sorted", { dat <- tibble( visit = factor(c("v1", "v2", "v3", "v3", "v1", "v2"), levels = c("v1", "v2", "v3")), id = factor(c("1", "1", "1", "2", "2", "2")), group = factor(c("A", "A", "A", "B", "B", "B")), outcome = c(1, 2, 3, 4, 5, NA) ) vars <- set_vars( outcome = "outcome", visit = "visit", subjid = "id", group = "group", strategy = "strategy" ) dat_ice <- tibble( visit = "v2", id = "2", strategy = "JR" ) ld <- longDataConstructor$new( data = dat, vars = vars ) ld$set_strategies(dat_ice) expect_equal(ld$values, list("1" = c(1, 2, 3), "2" = c(5, NA, 4))) expect_equal(ld$is_missing, list("1" = c(FALSE, FALSE, FALSE), "2" = c(FALSE, TRUE, FALSE))) expect_equal(ld$is_mar, list("1" = c(TRUE, TRUE, TRUE), "2" = c(TRUE, FALSE, FALSE))) dat2 <- dat %>% arrange(id, visit) %>% as_dataframe() expect_equal( dat2, ld$get_data() ) }) test_that("longdata rejects data that has no useable observations for a visit", { vars <- set_vars( outcome = "outcome", visit = "visit", subjid = "id", group = "group", strategy = "strategy" ) dat <- tibble( visit = factor(c("v1", "v2", "v3", "v1", "v2", "v3"), levels = c("v1", "v2", "v3")), id = factor(c("1", "1", "1", "2", "2", "2")), group = factor(c("A", "A", "A", "B", "B", "B")), outcome = c(1, 2, NA, 4, 5, NA) ) expect_error( longDataConstructor$new(data = dat, vars = vars), regexp = "resulted in the `v3` visit" ) dat <- tibble( visit = factor(c("v1", "v2", "v3", "v1", "v2", "v3"), levels = c("v1", "v2", "v3")), id = factor(c("1", "1", "1", "2", "2", "2")), group = factor(c("A", "A", "A", "B", "B", "B")), outcome = c(1, 2, 3, 4, 5, NA) ) dat_ice <- tibble( visit = "v2", id = c("2", "1"), strategy = "JR" ) ld <- longDataConstructor$new(data = dat, vars = vars) expect_error( ld$set_strategies(dat_ice), regexp = "has resulted in the `v2`, `v3` visit" ) }) test_that( "Validate `is_mar` object", { index_mar <- as_class(c(TRUE, TRUE, FALSE, FALSE), "is_mar") expect_true(validate(index_mar)) index_mar <- as_class(c(TRUE, TRUE, TRUE, TRUE), "is_mar") expect_true(validate(index_mar)) index_mar <- as_class(c(FALSE, FALSE, FALSE, FALSE), "is_mar") expect_true(validate(index_mar)) index_mar <- as_class(c(TRUE, TRUE, FALSE, TRUE), "is_mar") expect_error(validate(index_mar)) index_mar <- as_class(c(FALSE, FALSE, TRUE, TRUE), "is_mar") expect_error(validate(index_mar)) } ) test_that("Formula is created properly", { vars <- set_vars( outcome = "outcome", visit = "visit", subjid = "subjid", group = "group", strata = "strata", covariates = c("sex", "age"), strategy = "strategy" ) dat <- tibble( subjid = factor(rep(c("Tom", "Harry", "Phil", "Ben"), each = 3), levels = c("Tom", "Harry", "Phil", "Ben")), age = rep(c(0.04, -0.14, -0.03, -0.33), each = 3), group = factor(rep(c("B", "B", "A", "A"), each = 3), levels = c("A", "B")), sex = factor(rep(c("F", "M", "M", "F"), each = 3), levels = c("M", "F")), strata = rep(c("A", "A", "A", "B"), each = 3), visit = factor(rep(c("Visit 1", "Visit 2", "Visit 3"), 4)), outcome = c( NA, NA, NA, NA, 4.14, NA, NA, -1.34, 2.41, -1.53, 1.03, 2.58 ) ) ld <- longDataConstructor$new( data = dat, vars = vars ) formula_actual <- outcome ~ 1 + group + visit + sex + age expect_true(formula_actual == ld$formula) dat <- tibble( subjid = factor(rep(c("Tom", "Harry", "Phil", "Ben"), each = 3), levels = c("Tom", "Harry", "Phil", "Ben")), age = rep(c(0.04, -0.14, -0.03, -0.33), each = 3), group = factor(rep(c("B", "B", "B", "B"), each = 3), levels = c("B")), sex = factor(rep(c("F", "M", "M", "F"), each = 3), levels = c("M", "F")), strata = rep(c("A", "A", "A", "B"), each = 3), visit = factor(rep(c("Visit 1", "Visit 2", "Visit 3"), 4)), outcome = c( NA, NA, NA, NA, 4.14, NA, NA, -1.34, 2.41, -1.53, 1.03, 2.58 ) ) ld <- longDataConstructor$new( data = dat, vars = vars ) formula_actual <- outcome ~ 1 + visit + sex + age expect_true(formula_actual == ld$formula) dat <- tibble( subjid = factor(rep(c("Tom", "Harry", "Phil", "Ben"), each = 3), levels = c("Tom", "Harry", "Phil", "Ben")), age = rep(c(0.04, -0.14, -0.03, -0.33), each = 3), group = factor(rep(c("A", "B", "C", "D"), each = 3), levels = c("A", "B", "C", "D")), sex = factor(rep(c("F", "M", "M", "F"), each = 3), levels = c("M", "F")), strata = rep(c("A", "A", "A", "B"), each = 3), visit = factor(rep(c("Visit 1", "Visit 2", "Visit 3"), 4)), outcome = c( NA, NA, NA, NA, 4.14, NA, NA, -1.34, 2.41, -1.53, 1.03, 2.58 ) ) ld <- longDataConstructor$new( data = dat, vars = vars ) formula_actual <- outcome ~ 1 + group + visit + sex + age expect_true(formula_actual == ld$formula) }) test_that("check_has_data_at_each_visit() catches the correct visit that has no data", { visits <- c("V", "I", "S", "T") dat <- tibble( pt = factor(c("A", "A", "A", "A", "B", "B", "B", "B"), levels = c("A", "B")), vis = factor(rep(visits, 2), levels = visits), out = c(NA, 4, 5, 3, 6, NA, 1, NA), group = factor(c("G", "G", "G", "G", "F", "F", "F", "F"), levels = c("G", "F")), age = rnorm(8) ) vars <- set_vars( outcome = "out", visit = "vis", subjid = "pt", group = "group", covariates = c("age"), strategy = "strategy" ) ld <- longDataConstructor$new(dat, vars) dat_ice <- tibble( vis = factor(c("S", "T"), levels = visits), pt = factor(c("A", "B"), levels = c("A", "B")), strategy = c("JR", "JR") ) expect_error( ld$set_strategies(dat_ice), regexp = "`T` visit" ) visits <- c(5, 6, 8, 1) dat <- tibble( pt = factor(c("A", "A", "A", "A", "B", "B", "B", "B"), levels = c("A", "B")), vis = factor(rep(visits, 2), levels = visits), out = c(NA, 4, 5, 3, 6, NA, 1, NA), group = factor(c("G", "G", "G", "G", "F", "F", "F", "F"), levels = c("G", "F")), age = rnorm(8) ) vars <- set_vars( outcome = "out", visit = "vis", subjid = "pt", group = "group", covariates = c("age"), strategy = "strategy" ) ld <- longDataConstructor$new(dat, vars) dat_ice <- tibble( vis = factor(c(8, 1), levels = visits), pt = factor(c("A", "B"), levels = c("A", "B")), strategy = c("JR", "JR") ) expect_error( ld$set_strategies(dat_ice), regexp = "`1` visit" ) ld <- longDataConstructor$new(dat, vars) dat_ice <- tibble( vis = factor(c(8, 1), levels = visits), pt = factor(c("B", "A"), levels = c("A", "B")), strategy = c("MAR", "MAR") ) expect_true(ld$set_strategies(dat_ice)) }) test_that("get_data() uses na.rm and nmar.rm correctly", { # # This test proves that the bug identified in # https://github.com/insightsengineering/rbmi/issues/347 # has been resolved. # This was where `na.rm` and `nmar.rm` in `longdata$get_data()` only worked if IDs # were passed to the function # visits <- c("V", "I", "S", "T") dat <- tibble( pt = factor(c("B", "B", "A", "A", "B", "B", "A", "A"), levels = c("A", "B")), vis = factor(c("V", "T", "T", "S", "I", "S", "I", "V"), levels = visits), out = c(NA, 4, 5, NA, 6, 5, 5, 5), group = factor(c("G", "G", "F", "F", "G", "G", "F", "F"), levels = c("G", "F")), age = rnorm(8) ) IDS <- c("A", "B", "A") # Dataset to represent what the data should look like if the above IDs are specified dat2 <- bind_rows( dat %>% arrange(pt, vis), dat %>% arrange(pt, vis) %>% filter(pt == "A") ) %>% mutate(pt = rep(paste0("new_pt_", 1:3), each = 4)) vars <- set_vars( outcome = "out", visit = "vis", subjid = "pt", group = "group", covariates = c("age"), strategy = "strategy" ) ld <- longDataConstructor$new(dat, vars) ### Pre-strategies (no ids) (everything is MAR atm) expect_equal( ld$get_data(), dat %>% arrange(pt, vis) %>% as.data.frame() ) expect_equal( ld$get_data(na.rm = TRUE), dat %>% filter(!is.na(out)) %>% arrange(pt, vis) %>% as.data.frame() ) expect_equal( ld$get_data(na.rm = TRUE, nmar.rm = TRUE), dat %>% filter(!is.na(out)) %>% arrange(pt, vis) %>% as.data.frame() ) expect_equal( ld$get_data(nmar.rm = TRUE), dat %>% arrange(pt, vis) %>% as.data.frame() ) ### Pre-strategies (with ids) (everything is MAR atm) expect_equal( ld$get_data(IDS), dat2 %>% as.data.frame() ) expect_equal( ld$get_data(IDS, na.rm = TRUE), dat2 %>% filter(!is.na(out)) %>% as.data.frame() ) expect_equal( ld$get_data(IDS, nmar.rm = TRUE), dat2 %>% as.data.frame() ) expect_equal( ld$get_data(IDS, na.rm = TRUE, nmar.rm = TRUE), dat2 %>% filter(!is.na(out)) %>% as.data.frame() ) ############ # # Set strategies and test again.... # dat_ice <- tibble( vis = factor(c("I", "S"), levels = visits), pt = factor(c("A", "B"), levels = c("A", "B")), strategy = c("JR", "MAR") ) ld$set_strategies(dat_ice) ### Post-strategies (without ids) expect_equal( ld$get_data(), dat %>% arrange(pt, vis) %>% as.data.frame() ) expect_equal( ld$get_data(na.rm = TRUE), dat %>% filter(!is.na(out)) %>% arrange(pt, vis) %>% as.data.frame() ) expect_equal( ld$get_data(nmar.rm = TRUE), dat %>% filter(!(as.numeric(vis) >= 2 & pt == "A")) %>% arrange(pt, vis) %>% as.data.frame() ) expect_equal( ld$get_data(na.rm = TRUE, nmar.rm = TRUE), dat %>% filter(!is.na(out)) %>% filter(!(as.numeric(vis) >= 2 & pt == "A")) %>% arrange(pt, vis) %>% as.data.frame() ) ### Post-strategies (with ids) expect_equal( ld$get_data(IDS), dat2 %>% as.data.frame() ) expect_equal( ld$get_data(IDS, na.rm = TRUE), dat2 %>% filter(!is.na(out)) %>% as.data.frame() ) expect_equal( ld$get_data(IDS, nmar.rm = TRUE), dat2 %>% filter(!(as.numeric(vis) >= 2 & pt %in% c("new_pt_1", "new_pt_3"))) %>% as.data.frame() ) expect_equal( ld$get_data(IDS, na.rm = TRUE, nmar.rm = TRUE), dat2 %>% filter(!is.na(out)) %>% filter(!(as.numeric(vis) >= 2 & pt %in% c("new_pt_1", "new_pt_3"))) %>% as.data.frame() ) }) test_that("Warnings/errors are thrown when strategies are incorrectly updated", { vars <- set_vars( outcome = "out", group = "group", strategy = "strat", subjid = "pt", visit = "vis", covariates = c("age") ) dat <- tibble( pt = factor(c("A", "A", "A", "B", "B", "B", "C", "C", "C"), levels = c("A", "B", "C")), vis = factor(c("V1", "V2", "V3", "V1", "V2", "V3", "V1", "V2", "V3"), levels = c("V1", "V2", "V3")), out = c(1, 2, 3, 4, 5, 6, 7, 8, 9), group = factor(c("T", "T", "T", "C", "C", "C", "T", "T", "T"), levels = c("C", "T")), age = rnorm(9) ) dat_ice <- tibble( pt = factor(c("A", "B", "C"), levels = c("A", "B", "C")), vis = factor(c("V2", "V2", "V2"), levels = c("V1", "V2", "V3")), strat = c("JR", "MAR", "JR") ) longdata <- longDataConstructor$new(dat, vars) longdata$set_strategies(dat_ice) # Error if updating MAR -> Non-Mar ld2 <- longdata$clone() dat_ice_upd <- tibble( pt = factor(c("A", "B", "C"), levels = c("A", "B", "C")), strat = c("JR", "JR", "JR") ) expect_error( ld2$update_strategies(dat_ice_upd), regexp = "Updating strategies from MAR to non-MAR is invalid" ) # Warning if updating Non-MAR -> MAR ld2 <- longdata$clone() dat_ice_upd <- tibble( pt = factor(c("A", "B", "C"), levels = c("A", "B", "C")), strat = c("JR", "MAR", "MAR") ) expect_warning( ld2$update_strategies(dat_ice_upd), regexp = "Updating strategies from non-MAR to MAR.*You are advised to re-run `draws\\(\\)`" ) # Same as above but catches niche bug where the warning would be supressed # if a correct imputation came after an incorrect ld2 <- longdata$clone() dat_ice_upd <- tibble( pt = factor(c("A", "B", "C"), levels = c("A", "B", "C")), strat = c("MAR", "MAR", "JR") ) expect_warning( ld2$update_strategies(dat_ice_upd), regexp = "Updating strategies from non-MAR to MAR.*You are advised to re-run `draws\\(\\)`" ) }) test_that("Missing data_ices are handled correctly", { vars <- set_vars( outcome = "out", group = "group", strategy = "strat", subjid = "pt", visit = "vis", covariates = c("age") ) dat <- tibble( pt = factor(c("A", "A", "A", "B", "B", "B", "C", "C", "C"), levels = c("A", "B", "C")), vis = factor(c("V1", "V2", "V3", "V1", "V2", "V3", "V1", "V2", "V3"), levels = c("V1", "V2", "V3")), out = c(1, 2, 3, 4, 5, 6, 7, 8, 9), group = factor(c("T", "T", "T", "C", "C", "C", "T", "T", "T"), levels = c("C", "T")), age = rnorm(9) ) dat_ice <- tibble( pt = factor(c("A", "B", "C"), levels = c("A", "B", "C")), vis = factor(c("V2", "V2", "V2"), levels = c("V1", "V2", "V3")), strat = c("JR", "MAR", "JR") ) |> dplyr::filter(pt == "NOT A PT") longdata <- longDataConstructor$new(dat, vars) original <- longdata$clone(deep = TRUE) longdata$set_strategies(dat_ice) # When using a blank data_ice, nothing in longdata should be updated expect_equal(longdata, original) })