test_that("s3_methods", { skip_on_cran() df <- expect_silent(stats_table(adiv_table(rare50))) expect_silent(df$.n) # $.rbiom_tbl expect_output(print(df)) # tbl_sum.rbiom_tbl expect_output(print(df$cmd)) # print.rbiom_code expect_silent(as.list(min5)) # as.list.rbiom expect_silent(as.matrix(min5)) # as.matrix.rbiom expect_silent(pull(min5)) # pull.rbiom expect_output(glimpse(min5)) # glimpse.rbiom expect_silent(mutate(hmp5, x = 1)) # mutate.rbiom expect_silent(rename(hmp5, x = Sex)) # rename.rbiom expect_silent(with(hmp5, Age * 2)) # with.rbiom expect_silent(within(hmp5, x <- 1)) # within.rbiom expect_silent(subset(hmp5, Age > 25)) # subset.rbiom expect_silent(hmp5[1:3]) # `[.rbiom`(i) expect_silent(hmp5[1:10,1:3]) # `[.rbiom`(i,j) expect_silent(na.omit(hmp5)) # na.omit.rbiom expect_silent(slice(hmp5, 1:2, 4)) # slice.rbiom expect_silent(slice_head(hmp5, n = 2)) # slice_head.rbiom expect_silent(slice_tail(hmp5, n = 2)) # slice_tail.rbiom expect_silent(slice_min(hmp5, Age, n = 2)) # slice_min.rbiom expect_silent(slice_max(hmp5, Age, n = 2)) # slice_max.rbiom expect_silent(slice_sample(hmp5, n = 2)) # slice_sample.rbiom })