test_that("elimination_rate", { skip_on_cran() # # small test to run fast # data("Male_Gammarus_Single") # modelData_MGS_ke <- modelData(Male_Gammarus_Single, time_accumulation = 4) # fit_MGS_ke <- fitTK(modelData_MGS_ke, iter = 1000, chains = 2) # plot(fit_MGS_ke) # plot_PriorPost(fit_MGS_ke) # # # modelData_MGS_ke0 <- modelData(Male_Gammarus_Single, time_accumulation = 4, elimination_rate = 1e-9) # fit_MGS_ke0 <- fitTK(modelData_MGS_ke0, iter = 1000, chains = 2) # plot(fit_MGS_ke0) # ppc(fit_MGS_ke0) # plot_PriorPost(fit_MGS_ke0) # # data("Male_Gammarus_seanine_growth") # modelData_MGSG_ke <- modelData(Male_Gammarus_seanine_growth, time_accumulation = 1.417) # fit_MGSG_ke <- fitTK(modelData_MGSG_ke, iter = 1000, chains=2) # plot(fit_MGSG_ke) # modelData_MGSG_ke0 <- modelData(Male_Gammarus_seanine_growth, time_accumulation = 1.417, elimination_rate = 1e-9) # fit_MGSG_ke0 <- fitTK(modelData_MGSG_ke0, iter = 1000, chains=2) # plot(fit_MGSG_ke0) # ppc(fit_MGSG_ke0) # # data("Chiro_Creuzot") # Chiro_Creuzot <- Chiro_Creuzot[Chiro_Creuzot$replicate == 1,] # modelData_CC_ke <- modelData(Chiro_Creuzot, time_accumulation = 1.0, elimination_rate = 1e-9) # fit_CC_ke <- fitTK(modelData_CC_ke, iter = 1000, chains=2) # plot(fit_CC_ke) # modelData_CC_ke0 <- modelData(Chiro_Creuzot, time_accumulation = 1.0, elimination_rate = 1e-9) # fit_CC_ke0 <- fitTK(modelData_CC_ke0, iter = 1000, chains=2) # plot(fit_CC_ke0) # ppc(fit_CC_ke0) })