data("anesthesia") ds_fit <- rater(anesthesia, dawid_skene(), iter = 200, chains = 1, verbose = FALSE) hds_fit <- rater(anesthesia, hier_dawid_skene(), iter = 200, chains = 1, verbose = FALSE) ccds_fit <- rater(anesthesia, class_conditional_dawid_skene(), iter = 200, chains = 1, verbose = FALSE, seed = 42) ds_fit_optim <- rater(anesthesia, dawid_skene(), method = "optim") hds_fit_optim <- rater(anesthesia, hier_dawid_skene(), method = "optim") ccds_fit_optim <- rater(anesthesia, class_conditional_dawid_skene(), method = "optim") ds_fit_grouped <- rater(caries, dawid_skene(), data_format = "grouped", iter = 200, chains = 1, verbose = FALSE) ds_fit_grouped_optim <- rater(caries, dawid_skene(), method = "optim", data_format = "grouped") ds_model <- dawid_skene() hds_model <- hier_dawid_skene() ccds_model <- class_conditional_dawid_skene() default_colnames <- c( item = "item", rater = "rater", rating = "rating" ) J <- 5 I <- 45 K <- 4 J_caries <- 5 I_caries <- 3859 K_caries <- 2