# library(radiant.multivariate) # library(testthat) trim <- function(x) gsub("^\\s+|\\s+$", "", x) context("Maps") test_that("City MDS points", { result <- mds(city, "from", "to", "distance") # str(result) res1 <- result$res$points # dput(result$res$points) res2 <- structure(c( -1348.66832957982, -1198.87410814714, -1076.98554040122, -1226.93901099845, -428.454832718783, 1596.1594018405, 1697.22828135996, 1464.04701004452, 522.48712860043, -462.400598146569, -306.546900234988, -136.432035420421, 1013.62838366558, -174.603164807742, -639.307768963489, 131.685862779591, 560.580459896188, 13.3957612318459 ), .Dim = c( 9L, 2L ), .Dimnames = list(c( "Boston", "NY", "DC", "Miami", "Chicago", "Seattle", "SF", "LA", "Denver" ), NULL)) expect_equal(abs(res1), abs(res2)) }) test_that("Computer perceptual map", { result <- prmap(computer, "brand", "high_end:business") # str(result) res1 <- result$fres$scores # dput(result$res$points) res2 <- structure(c( 1.2990975042645, -0.318156927318684, -1.18661978839803, -0.522421680770708, 0.728100892222923, 0.0936804393886441, -0.208948184854464, -0.934302935231416, 1.64813821225715, -0.598567531559918 ), .Dim = c( 5L, 2L ), .Dimnames = list(c("Apple", "Dell", "Gateway", "HP", "Sony"), c("RC1", "RC2"))) expect_equal(res1, res2) }) context("Factor/PCA analysis") test_that("Pre nalysis for diamonds", { result <- pre_factor(diamonds, c("price", "carat", "table")) # str(result) res1 <- result$pre_r2 # dput(result$pre_r2) res2 <- structure(list(Rsq = c(0.861258211951766, 0.86356619173057, 0.0450708598611924)), .Names = "Rsq", row.names = c("price", "carat", "table"), class = "data.frame") expect_equal(res1, res2) }) test_that("Factor/PCA analysis for diamonds", { result <- full_factor(diamonds, c("price", "carat", "table")) # str(result) res1 <- result$floadings # dput(result$floadings) res2 <- structure(list(PC1 = c( 0.964483176117948, 0.972902482025944, 0.325710945731448 )), .Names = "PC1", row.names = c( "price", "carat", "table" ), class = "data.frame") expect_equal(res1, res2) }) context("Cluster analysis") test_that("Hierarchical cluster analysis", { result <- hclus(shopping, vars = "v1:v6") # str(result) res1 <- result$hc_out$height # dput(result$hc_out$height) res2 <- c( 0.693447070258665, 0.77981545158788, 1.19609257290417, 1.20263048421394, 1.20263048421394, 1.25874249684769, 1.59728591646143, 1.76984887051771, 1.88396035104441, 2.06113619040031, 3.37654118004185, 3.5167211043475, 3.77286952167201, 5.26961961999936, 7.6948927428698, 9.4541210015406, 12.7002828285666, 76.1882734993453, 92.3810886131668 ) expect_equal(res1, res2) }) test_that("K-clustering", { result <- kclus(shopping, vars = "v1:v6") # str(result) res1 <- result$clus_means # dput(result$clus_means) res2 <- structure(list(v1 = c(5.75, 2.58333333333333), v2 = c( 3.625, 4.41666666666667 ), v3 = c(6, 2.58333333333333), v4 = c( 3.125, 4.75 ), v5 = c(1.875, 4.5), v6 = c(3.875, 4.66666666666667)), class = "data.frame", row.names = c( "Cluster 1", "Cluster 2" ), .Names = c("v1", "v2", "v3", "v4", "v5", "v6")) expect_equal(res1, res2) }) context("Conjoint analysis") test_that("Conjoint on mp3 data", { result <- conjoint(mp3, rvar = "Rating", evar = "Memory:Shape") res1 <- capture_output(summary(result)) res2 <- "Conjoint analysis\nData : mp3 \nResponse variable : Rating \nExplanatory variables: Memory, Radio, Size, Price, Shape \n\nConjoint part-worths:\n Attributes Levels PW\n Memory 4GB 0.000\n Memory 6GB 7.667\n Memory 8GB 29.667\n Radio No 0.000\n Radio Yes 6.111\n Size Large 0.000\n Size Medium 6.333\n Size Small 8.500\n Price $50 0.000\n Price $100 -6.833\n Price $150 -33.833\n Shape Circular 0.000\n Shape Rectangular -27.833\n Shape Square -13.333\n Base utility ~ 58.111\n\nConjoint importance weights:\n Attributes IW\n Memory 0.280\n Radio 0.058\n Size 0.080\n Price 0.319\n Shape 0.263\n\nConjoint regression results:\n\n coefficient\n (Intercept) 58.111\n Memory|6GB 7.667\n Memory|8GB 29.667\n Radio|Yes 6.111\n Size|Medium 6.333\n Size|Small 8.500\n Price|$100 -6.833\n Price|$150 -33.833\n Shape|Rectangular -27.833\n Shape|Square -13.333\n" expect_equal(res1, res2) })