context("CBrSPDE.operators") test_that("Checking covariances of CBrSPDE", { set.seed(123) nobs <- 100 s <- seq(from = 0, to = 1, length.out = nobs) fem <- rSPDE.fem1d(s) sigma <- 1 d <- 1 range <- 0.2 for (nu in c(0.8, 1.7, 2.6)) { op2 <- matern.operators(loc_mesh = s, nu = nu, range = range, sigma = sigma, d = 1, m = 2, parameterization = "matern" ) v <- t(rSPDE.A1d(s, 0.5)) c.true <- folded.matern.covariance.1d(s, rep(0.5,length(s)), kappa = sqrt(8*nu)/range, nu, sigma) Q <- op2$Q A <- Diagonal(nobs) Abar <- cbind(A, A, A) w <- rbind(v, v, v) c.approx2 <- (Abar) %*% solve(Q, w) res <- sum((c.approx2 - c.true)^2) expect_equal(res, 0, tolerance = 1e-4) } }) test_that("Checking loglike of CBrSPDE", { set.seed(123) nobs <- 100 s <- seq(from = 0, to = 1, length.out = nobs) fem <- rSPDE.fem1d(s) range = 0.2 sigma <- 1 d <- 1 for (nu in c(0.8, 1.7, 2.6)) { op2 <- matern.operators(loc_mesh = s, nu = nu, range = range, sigma = sigma, d = 1, m = 2, parameterization = "matern" ) A <- Diagonal(nobs) sim_data <- A %*% simulate(op2) + rnorm(dim(A)[1], sd = 0.1) loglike2 <- rSPDE.matern.loglike( object = op2, Y = sim_data, A = A, sigma.e = 0.1, nu = nu, kappa = kappa, sigma = sigma ) op1 <- matern.operators( range = range, sigma = sigma, nu = nu, loc_mesh = s, d = 1, type = "operator", parameterization = "matern" ) loglike1 <- rSPDE.matern.loglike(op1, sim_data, A, sigma.e = 0.1) expect_equal(loglike1, loglike2, tol = 0.3) } }) test_that("Checking Predict of CBrSPDE", { set.seed(123) nobs <- 100 s <- seq(from = 0, to = 1, length.out = nobs) fem <- rSPDE.fem1d(s) range <- 0.2 sigma <- 1 d <- 1 for (nu in c(0.8, 1.7, 2.6)) { Aprd <- rSPDE.A1d(s, 0.5) op2 <- matern.operators( C = fem$C, G = fem$G, nu = nu, range = range, sigma = sigma, d = 1, m = 2, parameterization = "matern" ) A <- Diagonal(nobs) sim_data <- A %*% simulate(op2) + rnorm(dim(A)[1], sd = 0.1) predict2 <- predict( object = op2, Y = sim_data, A = A, sigma.e = 0.1, Aprd = Aprd, compute.variances = TRUE ) op1 <- matern.operators( range = range, sigma = sigma, nu = nu, G = fem$G, C = fem$C, d = 1, type = "operator", parameterization = "matern" ) predict1 <- predict( object = op1, Y = sim_data, A = A, Aprd = Aprd, sigma.e = 0.1, compute.variances = TRUE ) expect_equal(as.double(predict1$mean), as.double(predict2$mean), tol = 0.02) expect_equal(as.double(predict1$variance), as.double(predict2$variance), tol = 0.002) } }) test_that("Checking loglike of CBrSPDE with replicates", { set.seed(123) nobs <- 100 s <- seq(from = 0, to = 1, length.out = nobs) fem <- rSPDE.fem1d(s) range <- 0.2 sigma <- 1 d <- 1 for (nu in c(0.8, 1.7, 2.6)) { op2 <- matern.operators( loc_mesh = s, nu = nu, range = range, sigma = sigma, d = 1, m = 2, parameterization = "matern" ) A <- Diagonal(nobs) sim_data1 <- A %*% simulate(op2) + rnorm(dim(A)[1], sd = 0.1) sim_data2 <- A %*% simulate(op2) + rnorm(dim(A)[1], sd = 0.1) sim_data <- cbind(sim_data1, sim_data2) loglike2 <- rSPDE.matern.loglike(object = op2, Y = sim_data, A = A, sigma.e = 0.1) op1 <- matern.operators( range = range, sigma = sigma, nu = nu, loc_mesh = s, d = 1, type = "operator", parameterization = "matern" ) loglike1 <- rSPDE.matern.loglike(op1, sim_data, A, sigma.e = 0.1) expect_equal(loglike1, loglike2, tol = 0.3) } })