R Under development (unstable) (2024-05-25 r86622 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(quantreg) Loading required package: SparseM Attaching package: 'SparseM' The following object is masked from 'package:base': backsolve > > (dDIR <- system.file("demo", package = "quantreg")) [1] "D:/RCompile/CRANincoming/R-devel/lib/quantreg/demo" > set.seed(1) # since some demos randomly generate > > cat("Running demos from package 'quantreg' : \n\n") Running demos from package 'quantreg' : > for(ff in list.files(dDIR, pattern="\\.R$", full.names = TRUE)) { + f <- basename(ff) + cat("\n", f," :\n", paste(rep.int("-", nchar(f)), collapse=''), + "\n", sep='') + + source(ff, echo = TRUE) + } Frank.R : ------- > vFrank <- function(x, df, delta, u) -log(1 - (1 - + exp(-delta))/(1 + exp(-delta * pt(x, df)) * ((1/u) - 1)))/delta > FrankModel <- function(x, delta, mu, sigma, df, tau) { + z <- qt(vFrank(x, df, delta, u = tau), df) + mu + sigma * z + } > n <- 200 > df <- 8 > delta <- 8 > set.seed(1989) > x <- sort(rt(n, df)) > v <- vFrank(x, df, delta, u = runif(n)) > y <- qt(v, df) > plot(x, y, pch = "o", col = "blue", cex = 0.25) > Dat <- data.frame(x = x, y = y) > us <- c(0.25, 0.5, 0.75) > for (i in 1:length(us)) { + v <- vFrank(x, df, delta, u = us[i]) + lines(x, qt(v, df)) + } > cfMat <- matrix(0, 3, length(us)) > trace <- TRUE > trace <- FALSE > for (i in 1:length(us)) { + tau <- us[i] + cat("tau = ", format(tau), ".. ") + fit <- nlrq(y ~ FrankModel(x, delta, mu, sigma, df = 8, t .... [TRUNCATED] tau = 0.25 .. tau = 0.5 .. tau = 0.75 .. > colnames(cfMat) <- names(coef(fit)) > cfMat delta mu sigma [1,] 14.86275 -0.20513700 0.9135934 [2,] 16.65111 0.03327799 0.9578400 [3,] 11.99822 0.11557829 0.9464470 KMvCRQ.R : -------- > if (requireNamespace("survival", quietly = TRUE)) { + n <- 100 + y <- rchisq(n, 3) + c <- rchisq(n, 5) + Y <- pmin(y, c) + d <- .... [TRUNCATED] MCV.R : ----- > MCV <- function(lambdas, formula, data, tau = 0.5, + k = 10) { + F <- Munge(formula, lambdas = lambdas) + f <- rqss(F, data, tau = tau) .... [TRUNCATED] > set.seed(1729) > n <- 200 > x <- sort(runif(n, 0, 20)) > g0 <- function(x, tau) log(x) + 0.2 * (log(x))^3 + + log(x) * qnorm(tau)/4 > y <- g0(x, runif(n)) > D <- data.frame(y = y, x = x) > lams <- mcvs <- seq(0.02, 5, by = 0.2) > for (i in 1:length(mcvs)) mcvs[i] <- MCV(lams[i], + y ~ qss(x, lambda = lambdas[1]), D) > par(mfrow = c(1, 2)) > plot(lams, mcvs, cex = 0.5, lwd = 2, type = "l", xlab = expression(lambda), + ylab = expression(MCV(lambda))) > lambdastar <- lams[which.min(mcvs)] > plot(x, y, cex = 0.5, col = "grey") > f <- rqss(y ~ qss(x, lambda = lambdastar), data = D) > plot(f, add = TRUE, lwd = 2) > lines(x, g0(x, 0.5), col = "red", lwd = 2) > text(10, 1, bquote(lambda == ~.(lambdastar))) Mammals.R : --------- > require(quantreg) > data(Mammals) > attach(Mammals) > x <- log(weight) > xx <- unique(x[order(x)]) > y <- log(speed) > plot(x, y, xlab = "Weight in log(Kg)", ylab = "Speed in log(Km/hour)", + type = "n") > points(x[hoppers], y[hoppers], pch = "h", col = "red") > points(x[specials], y[specials], pch = "s", col = "blue") > others <- (!hoppers & !specials) > points(x[others], y[others], col = "black", cex = 0.75) > taus <- c(0.5, 0.9) > for (i in 1:length(taus)) { + fit <- rqss(y ~ qss(x, lambda = 1, constraint = "C"), tau = taus[i]) + plot(fit, title = "Running Speed of Mam ..." ... [TRUNCATED] > legend(4, 2, c("Median", "0.9 Quantile"), lty = 1, + col = 1:2, lwd = 1.5) > plot(fit, title = "Running Speed of Mammals", band = "both", + col = i, lwd = 1.5) > xy <- fit$qss[[1]]$xyz > xx <- xy[, 1] > yhat <- fit$coef[1] + xy[, 2] > g <- diff(yhat)/diff(xx) > plot(xx[-1], g, main = "Fitted Slopes of Running Speed", + xlab = "Weight in log(Kg)", ylab = "dlog(Speed) /dlog(Weight)") Mel.R : ----- > require(splines) Loading required package: splines > if (interactive()) { + oldpar <- par(ask = TRUE) + data(MelTemp) + x <- MelTemp[-3650] + y <- MelTemp[-1] + s <- (x < 40) + .... [TRUNCATED] Mel2.R : ------ > require(splines) > if (interactive()) { + oldpar <- par(ask = TRUE) + data(MelTemp) + x <- MelTemp[-3650] + y <- MelTemp[-1] + s <- (x < 40) + .... [TRUNCATED] Panel.R : ------- > library(quantreg) > rq.fit.panel <- function(X, y, s, w = c(1/3, 1/3, + 1/3), taus = c(0.25, 0.5, 0.75), lambda = 0) { + require(SparseM) + require(quantre .... [TRUNCATED] > n <- 3 > T <- 50 > nT <- n * T > u1 <- rnorm(T) > u2 <- rnorm(T) > u3 <- rnorm(T) > x1 <- rnorm(T, 1, 0.85) > x2 <- rnorm(T, 4, 1) > x3 <- rnorm(T, 7, 1) > beta1 <- 1 > beta2 <- 0.5 > y1 <- 0 + beta1 * x1 + (beta2 * x1) * u1 > y2 <- 4 + beta1 * x2 + (beta2 * x2) * u2 > y3 <- 8 + beta1 * x3 + (beta2 * x3) * u3 > plot(c(0, 9), c(0, 25), type = "n", xlab = expression(x[it]), + ylab = expression(y[it])) > points(x1, y1, pch = 15) > points(x2, y2, pch = 15, col = "blue") > points(x3, y3, pch = 15, col = "red") > legend(1, 17, paste("i = ", 1:3, sep = ""), pch = 15, + col = c("black", "blue", "red")) > ya <- c(y1, y2, y3) > xa <- c(x1, x2, x3) > taus <- c(0.25, 0.5, 0.75) > xx <- seq(min(xa), max(xa), 0.25) > f <- coef(rq(ya ~ xa, tau = taus)) > yy <- cbind(1, xx) %*% f > for (i in 1:3) lines(xx, yy[, i], col = "grey") > s <- rep(1:n, rep(T, n)) > fp <- rq.fit.panel(xa, ya, s)$coef > bhat <- fp[1:3] > fehat <- fp[4:6] > xx1 <- seq(min(x1), max(x1), 0.25) > for (i in 1:3) { + yy1 <- fehat[1] + bhat[i] * xx1 + lines(xx1, yy1, col = "black") + } > xx2 <- seq(min(x2), max(x2), 0.25) > for (i in 1:3) { + yy2 <- fehat[2] + bhat[i] * xx2 + lines(xx2, yy2, col = "blue") + } > xx3 <- seq(min(x3), max(x3), 0.25) > for (i in 1:3) { + yy3 <- fehat[3] + bhat[i] * xx3 + lines(xx3, yy3, col = "red") + } Polson.R : -------- > dgp <- function(n) { + x <- 0:n/n + y <- rnorm(n + 1, 5 * sin(2 * pi * x), 0.5 + exp(1.5 * sin(4 * + pi * x))) + data.frame(x = .... [TRUNCATED] > D <- dgp(1000) > plot(D$x, D$y, cex = 0.5) > taus <- 1:9/10 > for (i in 1:length(taus)) plot(rqss(y ~ qss(x, lambda = 1/10), + tau = taus[i], data = D), rug = FALSE, add = TRUE) RB-r.R : ------ > if (require(MASS)) { + require(quantreg) + X <- cbind(1, matrix(rnorm(500), 100, 5)) + y <- rnorm(100) + R <- matrix(rnorm(18), 3, 6 .... [TRUNCATED] Loading required package: MASS arqss.R : ------- > n <- 2000 > x <- 1:n/n > noise <- rgamma(n, 3, 1) > g0 <- function(x) sin(10 * x) > y <- g0(x) + noise > arqss <- function(x, y, tau, g0 = NULL) { + g <- function(lam, y, x, tau) AIC(rqss(y ~ qss(x, lambda = lam), + tau = tau), k = -1) + .... [TRUNCATED] > arqss(x, y, 0.5, g0) cobar.R : ------- > require(quantreg) > if (requireNamespace("interp")) { + do.rgl <- interactive() && require(rgl) + data(CobarOre) + fit <- rqss(z ~ qss(cbind(x, y), lambda = .... [TRUNCATED] Loading required namespace: interp combos.R : -------- > H <- combos(20, 3) > if (!require("rgl", quietly = TRUE)) { + warning("The package rgl is needed for plotting") + } else { + if (interactive()) { + plot3 .... [TRUNCATED] cpoint.R : -------- > x <- runif(200, 0, 10) > u <- rnorm(200)/5 > y <- 1 + x - 0.5 * (x - 3) * (x > 3) + u > plot(y ~ x, cex = 0.5, col = "grey") > z <- rqss(y ~ qss(x, lambda = 10), tau = 0.5) > plot(z, col = "dark blue") > eps <- 1e-05 > Nz <- abs(z$resid[1:200]) < eps > Nj <- abs(z$resid[201:398]) > eps > xx <- z$qss[[1]]$xyz[, 1] > yy <- z$coef[1] + z$qss[[1]]$xyz[, 2] > xj <- xx[3:200] > yj <- yy[3:200] > points(xx[Nz], yy[Nz], col = "green") > points(xj[Nj], yj[Nj], col = "red") > print(paste("Number of zero residuals: ", sum(Nz))) [1] "Number of zero residuals: 4" > print(paste("Number of jumps in slope: ", sum(Nj))) [1] "Number of jumps in slope: 2" > legend(6, 3, c("Derivative Jumps", "Zero residuals"), + pch = "o", col = c("red", "green")) crquis.R : -------- > if (requireNamespace("survival", quietly = TRUE)) { + data(uis) + Surv <- survival::Surv + fit <- crq(Surv(log(TIME), CENSOR) ~ ND1 + ND .... [TRUNCATED] engel1.R : -------- > data(engel) > plot(foodexp ~ income, data = engel, cex = 0.5, col = "blue", + xlab = "Household Income", ylab = "Food Expenditure") > z <- rq(foodexp ~ income, tau = 0.5, data = engel) > abline(z, col = "dark blue") > abline(lm(foodexp ~ income, data = engel), lty = 2, + col = "red") > taus <- c(0.05, 0.1, 0.25, 0.75, 0.9, 0.95) > nt <- length(taus) > for (i in 1:length(taus)) { + abline(rq(foodexp ~ income, tau = taus[i], data = engel), + col = "gray") + } > legend("bottomright", c("L1 (tau = .50)", "OLS", paste("tau= ", + formatC(rev(taus)))), col = c("dark blue", "red", rep("gray", + nt)), lt .... [TRUNCATED] engel2.R : -------- > data(engel) > x.poor <- quantile(engel[, "income"], 0.1) > x.rich <- quantile(engel[, "income"], 0.9) > z <- rq(foodexp ~ income, tau = -1, data = engel) > ps <- z$sol["tau", ] > coefs <- z$sol[4:5, ] > qs.poor <- c(c(1, x.poor) %*% coefs) > qs.rich <- c(c(1, x.rich) %*% coefs) > par(mfrow = c(1, 2)) > plot(c(ps, ps), c(qs.poor, qs.rich), type = "n", xlab = expression(tau), + ylab = "quantile") > plot(stepfun(ps, c(qs.poor[1], qs.poor)), do.points = FALSE, + add = TRUE) > plot(stepfun(ps, c(qs.poor[1], qs.rich)), do.points = FALSE, + add = TRUE, col.hor = "gray", col.vert = "gray") > ps.wts <- (c(0, diff(ps)) + c(diff(ps), 0))/2 > ap <- akj(qs.poor, z = qs.poor, p = ps.wts) > ar <- akj(qs.rich, z = qs.rich, p = ps.wts) > plot(c(qs.poor, qs.rich), c(ap$dens, ar$dens), type = "n", + xlab = "Food Expenditure", ylab = "Density") > lines(qs.rich, ar$dens, col = "gray") > lines(qs.poor, ap$dens, col = "black") > legend("topright", c("poor", "rich"), lty = c(1, 1), + col = c("black", "gray")) hinged.R : -------- > require(quantreg) > if (requireNamespace("interp")) { + do.rgl <- interactive() && require(rgl) + n <- 1000 + x <- runif(n) + y <- runif(n) + z <- - .... [TRUNCATED] NULL panelfig.R : ---------- > library(quantreg) > rq.fit.panel <- function(X, y, s, w = c(1/3, 1/3, + 1/3), taus = c(0.25, 0.5, 0.75), lambda = 0) { + require(SparseM) + require(quantre .... [TRUNCATED] > n <- 3 > T <- 50 > nT <- n * T > u1 <- rnorm(T) > u2 <- rnorm(T) > u3 <- rnorm(T) > x1 <- rnorm(T, 1, 0.85) > x2 <- rnorm(T, 4, 1) > x3 <- rnorm(T, 7, 1) > beta1 <- 1 > beta2 <- 0.5 > y1 <- 0 + beta1 * x1 + (beta2 * x1) * u1 > y2 <- 4 + beta1 * x2 + (beta2 * x2) * u2 > y3 <- 8 + beta1 * x3 + (beta2 * x3) * u3 > plot(c(0, 9), c(0, 25), type = "n", xlab = expression(x[it]), + ylab = expression(y[it])) > points(x1, y1, pch = 15) > points(x2, y2, pch = 15, col = "blue") > points(x3, y3, pch = 15, col = "red") > legend(1, 17, paste("i = ", 1:3, sep = ""), pch = 15, + col = c("black", "blue", "red")) > ya <- c(y1, y2, y3) > xa <- c(x1, x2, x3) > taus <- c(0.25, 0.5, 0.75) > xx <- seq(min(xa), max(xa), 0.25) > f <- coef(rq(ya ~ xa, tau = taus)) > yy <- cbind(1, xx) %*% f > for (i in 1:3) lines(xx, yy[, i], col = "grey") > s <- rep(1:n, rep(T, n)) > fp <- rq.fit.panel(xa, ya, s)$coef > bhat <- fp[1:3] > fehat <- fp[4:6] > xx1 <- seq(min(x1), max(x1), 0.25) > for (i in 1:3) { + yy1 <- fehat[1] + bhat[i] * xx1 + lines(xx1, yy1, col = "black") + } > xx2 <- seq(min(x2), max(x2), 0.25) > for (i in 1:3) { + yy2 <- fehat[2] + bhat[i] * xx2 + lines(xx2, yy2, col = "blue") + } > xx3 <- seq(min(x3), max(x3), 0.25) > for (i in 1:3) { + yy3 <- fehat[3] + bhat[i] * xx3 + lines(xx3, yy3, col = "red") + } predemo.R : --------- > par(ask = TRUE) > sub <- "Classical Gaussian Version" > plot(cars$speed, cars$dist, xlim = c(0, 27), ylim = c(-10, + 130), main = "Ezekiel Data", sub = sub, xlab = "speed (mph)", + ylab = "stopp ..." ... [TRUNCATED] > ss = seq(0, 27, len = 100) > flm <- lm(dist ~ speed + I(speed^2), data = cars) > cflm <- predict(flm, list(speed = ss), data = cars, + interval = "confidence") > pflm <- predict(flm, list(speed = ss), data = cars, + interval = "prediction") > matlines(ss, pflm, lty = c(1, 2, 2), col = c("black", + "red", "red")) > matlines(ss, cflm, lty = c(1, 2, 2), col = c("black", + "blue", "blue")) > fl = rq(dist ~ speed + I(speed^2), data = cars, tau = 0.25) > fu = rq(dist ~ speed + I(speed^2), data = cars, tau = 0.75) > sub <- "Covariance matrix estimation using nid" > plot(cars$speed, cars$dist, xlim = c(0, 27), ylim = c(-10, + 130), main = "Ezekiel Data", sub = sub, xlab = "speed (mph)", + ylab = "stopp ..." ... [TRUNCATED] > pl <- predict(fl, list(speed = ss), interval = "confidence", + se = "nid") > pu <- predict(fu, list(speed = ss), interval = "confidence", + se = "nid") > matlines(ss, pl, lty = c(1, 2, 0), col = c("black", + "red", "red")) > matlines(ss, pu, lty = c(1, 0, 2), col = c("black", + "red", "red")) > sub <- "Covariance matrix estimation using xy-bootstrap" > plot(cars$speed, cars$dist, xlim = c(0, 27), ylim = c(-10, + 130), main = "Ezekiel Data", sub = sub, xlab = "speed (mph)", + ylab = "stopp ..." ... [TRUNCATED] > pl <- predict(fl, list(speed = ss), interval = "confidence", + se = "boot", bsmethod = "xy") > pu <- predict(fu, list(speed = ss), interval = "confidence", + se = "boot", bsmethod = "xy") > matlines(ss, pl, lty = c(1, 2, 0), col = c("black", + "red", "red")) > matlines(ss, pu, lty = c(1, 0, 2), col = c("black", + "red", "red")) > sub <- "Covariance matrix estimation using weighted xy-bootstrap" > plot(cars$speed, cars$dist, xlim = c(0, 27), ylim = c(-10, + 130), main = "Ezekiel Data", sub = sub, xlab = "speed (mph)", + ylab = "stopp ..." ... [TRUNCATED] > pl <- predict(fl, list(speed = ss), interval = "confidence", + se = "boot", bsmethod = "wxy") > pu <- predict(fu, list(speed = ss), interval = "confidence", + se = "boot", bsmethod = "wxy") > matlines(ss, pl, lty = c(1, 2, 0), col = c("black", + "red", "red")) > matlines(ss, pu, lty = c(1, 0, 2), col = c("black", + "red", "red")) > sub <- "Percentile method using xy-bootstrap" > plot(cars$speed, cars$dist, xlim = c(0, 27), ylim = c(-10, + 130), main = "Ezekiel Data", sub = sub, xlab = "speed (mph)", + ylab = "stopp ..." ... [TRUNCATED] > pl <- predict(fl, list(speed = ss), interval = "confidence", + type = "percentile", se = "boot", bsmethod = "xy") > pu <- predict(fu, list(speed = ss), interval = "confidence", + type = "percentile", se = "boot", bsmethod = "xy") > matlines(ss, pl, lty = c(1, 2, 0), col = c("black", + "red", "red")) > matlines(ss, pu, lty = c(1, 0, 2), col = c("black", + "red", "red")) > sub <- "Direct method using iid covariance matrix" > plot(cars$speed, cars$dist, xlim = c(0, 27), ylim = c(-10, + 130), main = "Ezekiel Data", sub = sub, xlab = "speed (mph)", + ylab = "stopp ..." ... [TRUNCATED] > pl <- predict(fl, list(speed = ss), interval = "confidence", + type = "direct", se = "iid") > pu <- predict(fu, list(speed = ss), interval = "confidence", + type = "direct", se = "iid") > matlines(ss, pl, lty = c(1, 2, 0), col = c("black", + "red", "red")) > matlines(ss, pu, lty = c(1, 0, 2), col = c("black", + "red", "red")) > sub <- "Direct method using nid covariance matrix" > plot(cars$speed, cars$dist, xlim = c(0, 27), ylim = c(-10, + 130), main = "Ezekiel Data", sub = sub, xlab = "speed (mph)", + ylab = "stopp ..." ... [TRUNCATED] > pl <- predict(fl, list(speed = ss), interval = "confidence", + type = "direct", se = "nid") > pu <- predict(fu, list(speed = ss), interval = "confidence", + type = "direct", se = "nid") > matlines(ss, pl, lty = c(1, 2, 0), col = c("black", + "red", "red")) > matlines(ss, pu, lty = c(1, 0, 2), col = c("black", + "red", "red")) > par(ask = FALSE) rqsslasso.R : ----------- > n <- 100 > p <- 9 > q <- 3 > beta <- c(rep(1, q), rep(0, p - q)) > w <- matrix(rnorm(n * p), n, p) > x <- runif(n, 0, 10) > z <- runif(n, 0, 10) > y <- w %*% beta + sin(x) + (z^2)/50 + rnorm(n)/5 > d <- data.frame(w, x, y, z) > f <- rqss(y ~ w + qss(x, lambda = 3) + qss(z, lambda = 2), + method = "lasso", lambda = 3, data = d) > plot(f, bands = "both", bcol = c("lightsteelblue", + "lightsteelblue4")) stack.R : ------- > require(quantreg) > data(stackloss) > logLik.rq.process <- function(fit) { + y <- model.response(model.frame(fit)) + fhat <- predict(fit, type = "fhat") + fy <- mapply(functi .... [TRUNCATED] > f0 <- rq(stack.loss ~ 1, tau = -1) > f1 <- rq(stack.loss ~ stack.x, tau = -1) > l0 <- logLik(f0) > l1 <- logLik(f1) > f0 <- rq(stack.loss ~ 1, tau = 1:19/20) > f1 <- rq(stack.loss ~ stack.x, tau = 1:19/20) > l0 <- logLik(f0) > l1 <- logLik(f1) subset.R : -------- > require(quantreg) > n <- 200 > x <- sort(rchisq(n, 4)) > z <- rnorm(n) > s <- sample(1:n, n/2) > y <- log(x) + rnorm(n)/5 > D = data.frame(y = y, x = x, z = z, s = (1:n) %in% + s) > plot(x, y, cex = 0.5, col = "grey") > points(x[s], y[s], col = "pink", cex = 0.5) > lam = 0.2 > f0 <- rqss(y ~ qss(x, lambda = lam) + z, subset = s) > f1 <- rqss(y ~ qss(x, lambda = lam) + z, subset = s, + data = D) > plot(f0, add = TRUE, col = 2, lwd = 3) > plot(f1, add = TRUE, col = 4, lwd = 3) Warning messages: 1: In summary.rq(x, se = se, R = R, covariance = TRUE) : 5 non-positive fis 2: In survfit.coxph(x) : the model contains interactions; the default curve based on columm means of the X matrix is almost certainly not useful. Consider adding a newdata argument. 3: In pt(abs(ptab[, 3]), n - edf) : NaNs produced 4: In pf(ntab[i - 1, 4], ntab[i - 1, 1], n - edf) : NaNs produced 5: In summary.rq(object, cov = TRUE, ...) : 2 non-positive fis 6: In summary.rq(object, cov = TRUE, ...) : 2 non-positive fis > > > proc.time() user system elapsed 33.21 5.68 39.29