set.seed(0) n <- 500 p <- 3 x <- matrix(rnorm(n * p), n, p) eta <- 1 * x[, 1] + 2 * x[, 2] + 3 * x[, 3] y <- eta + rnorm(n) temp1_AIC <- RAMP::RAMP(X = x, y = y, penalty = "LASSO", tune = "AIC") temp1_BIC <- RAMP::RAMP(X = x, y = y, penalty = "LASSO", tune = "BIC") temp2_AIC <- tune.fit(x = x, y = y, penalty = "lasso", tune = "aic", lambda = 0) %>% suppressWarnings() temp2_BIC <- tune.fit(x = x, y = y, penalty = "lasso", tune = "bic", lambda = 0) %>% suppressWarnings() temp3 <- lm(y ~ x[, 1] + x[, 2] + x[, 3]) temp_mimic_quadVAR_AIC <- structure( list( AR_model = list(temp3), VAR_model = list(temp2_AIC), VAR_full_model = list(temp3), quadVAR_model = list(temp1_AIC), quadVAR_full_model = list(temp3), tune = "AIC" ), class = "quadVAR" ) temp_mimic_quadVAR_BIC <- structure( list( AR_model = list(temp3), VAR_model = list(temp2_BIC), VAR_full_model = list(temp3), quadVAR_model = list(temp1_BIC), quadVAR_full_model = list(temp3), tune = "BIC" ), class = "quadVAR" ) test_that("AIC and BIC measures are unified across packages", { expect_equal(summary(temp_mimic_quadVAR_AIC)$DiffIC, rep(0, 5)) expect_equal(summary(temp_mimic_quadVAR_BIC)$DiffIC, rep(0, 5)) })