library(qtl) data(map10) map10 <- map10[1:2] set.seed(8789993) simcross <- sim.cross(map10, n.ind=125, type="bc", model=rbind(c(1, 50, 1.5), c(2, 50, 0))) simcross$pheno[,1] <- simcross$pheno[,1] + rnorm(nind(simcross), 0, 2*simcross$qtlgeno[,2]) simcross <- calc.genoprob(simcross) out <- scanonevar(simcross, tol=0.01) summary(out, format="allpeaks") #### data(fake.bc) fake.bc <- fake.bc[1:2,1:150] # only chr 1 and 2, and first 100 individuals fake.bc <- calc.genoprob(fake.bc, step=5) out <- scanonevar(fake.bc, tol=0.01) summary(out, format="allpeaks") covar <- fake.bc$pheno[,c("sex", "age")] out <- scanonevar(fake.bc, mean_covar=covar, var_covar=covar, tol=0.01) summary(out, format="allpeaks") #########Simulate a vQTL on Chromosome 1######## chromo=1 qtl.position=14 # 50 cM N=nind(fake.bc) a1<-fake.bc$geno[[chromo]]$prob[,,1] y <- fake.bc$pheno$pheno1 y <- y + rnorm(N,0,exp(a1[,qtl.position])) out <- scanonevar(fake.bc, y, mean_covar=covar, var_covar=covar) summary(out, format="allpeaks") out <- scanonevar(fake.bc, y, mean_covar=covar, tol=0.01) summary(out, format="allpeaks") out <- scanonevar(fake.bc, y, var_covar=covar, tol=0.01) summary(out, format="allpeaks") out <- scanonevar(fake.bc, y, tol=0.01) summary(out, format="allpeaks")