R Under development (unstable) (2025-03-05 r87891 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > total_time <- Sys.time() > > suppressMessages(library(Rcpp)) > suppressMessages(library(dplyr)) > suppressMessages(library(data.table)) > suppressMessages(library(qs)) > suppressMessages(library(stringfish)) > options(warn = 1) > > do_gc <- function() { + if (utils::compareVersion(as.character(getRversion()), "3.5.0") != -1) { + gc(full = TRUE) + } else { + gc() + } + } > > # because sourceCpp uses setwd, we need absolute path to R_TESTS when run within R CMD check > R_TESTS <- Sys.getenv("R_TESTS") # startup.Rs > if (nzchar(R_TESTS)) { + R_TESTS_absolute <- normalizePath(R_TESTS) + Sys.setenv(R_TESTS = R_TESTS_absolute) + } > sourceCpp(code="#include + using namespace Rcpp; + // [[Rcpp::plugins(cpp11)]] + // [[Rcpp::export(rng=false)]] + CharacterVector splitstr(std::string x, std::vector cuts){ + CharacterVector ret(cuts.size() - 1); + for(uint64_t i=1; i list_elements){ + auto randchar = []() -> char + { + const char charset[] = + \"0123456789\" + \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\" + \"abcdefghijklmnopqrstuvwxyz\"; + const size_t max_index = (sizeof(charset) - 1); + return charset[ rand() % max_index ]; + }; + List ret(list_elements.size()); + std::string str(10,0); + for(size_t i=0; i(rand()); + break; + } + } + return ret; + }") > if (nzchar(R_TESTS)) Sys.setenv(R_TESTS = R_TESTS) > > args <- commandArgs(T) > if (nzchar(R_TESTS) || ((length(args) > 0) && args[1] == "check")) { # do fewer tests within R CMD check so it completes within a reasonable amount of time + reps <- 2 + test_points <- c(0, 1, 2, 4, 8, 2^5 - 1, 2^5 + 1, 2^5, 2^8 - 1, 2^8 + 1, 2^8, 2^16 - 1, 2^16 + 1, 2^16, 1e6) + test_points_slow <- c(0, 1, 2, 4, 8, 2^5 - 1, 2^5 + 1, 2^5, 2^8 - 1, 2^8 + 1, 2^8, 2^16 - 1, 2^16 + 1, 2^16) # for Character Vector, stringfish and list + max_size <- 1e6 + } else { + reps <- 3 + test_points <- c(0, 1, 2, 4, 8, 2^5 - 1, 2^5 + 1, 2^5, 2^8 - 1, 2^8 + 1, 2^8, 2^16 - 1, 2^16 + 1, 2^16, 1e6, 1e7) + test_points_slow <- test_points + max_size <- 1e7 + } > myfile <- tempfile() > > obj_size <- 0 > get_obj_size <- function() { + get("obj_size", envir = globalenv()) + } > set_obj_size <- function(x) { + assign("obj_size", get_obj_size() + as.numeric(object.size(x)), envir = globalenv()) + return(get_obj_size()); + } > random_object_generator <- function(N, with_envs = FALSE) { # additional input: global obj_size, max_size + if (sample(3, 1) == 1) { + ret <- as.list(1:N) + } else if (sample(2, 1) == 1) { + ret <- as.pairlist(1:N) + } else { + ret <- as.pairlist(1:N) + setlev(ret, sample(2L^12L, 1L) - 1L) + setobj(ret, 1L) + } + + for (i in 1:N) { + if (get_obj_size() > get("max_size", envir = globalenv())) break; + otype <- sample(12, size = 1) + z <- NULL + is_attribute <- ifelse(i == 1, F, sample(c(F, T), size = 1)) + if (otype == 1) {z <- rnorm(1e4); set_obj_size(z);} + else if (otype == 2) { z <- sample(1e4) - 5e2; set_obj_size(z); } + else if (otype == 3) { z <- sample(c(T, F, NA), size = 1e4, replace = T); set_obj_size(z); } + else if (otype == 4) { z <- (sample(256, size = 1e4, replace = T) - 1) %>% as.raw; set_obj_size(z); } + else if (otype == 5) { z <- replicate(sample(1e4, size = 1), {rep(letters, length.out = sample(10, size = 1)) %>% paste(collapse = "")}); set_obj_size(z); } + else if (otype == 6) { z <- rep(letters, length.out = sample(1e4, size = 1)) %>% paste(collapse = ""); set_obj_size(z); } + else if (otype == 7) { z <- as.formula("y ~ a + b + c : d", env = globalenv()); attr(z, "blah") <- sample(1e4) - 5e2; set_obj_size(z); } + else if (with_envs && otype %in% c(8, 9)) { z <- function(x) {x + runif(1)} } + # else if(with_envs && otype %in% c(10,11)) { z <- new.env(); z$x <- random_object_generator(N, with_envs); makeActiveBinding("y", function() runif(1), z) } + else { z <- random_object_generator(N, with_envs) } + if (is_attribute) { + attr(ret[[i - 1]], runif(1) %>% as.character()) <- z + } else { + ret[[i]] <- z + } + } + return(ret) + } > > rand_strings <- function(n) { + s <- sample(0:100, size = n, replace = T) + x <- lapply(unique(s), function(si) { + stringfish::random_strings(sum(s == si), si, vector_mode = "normal") + }) %>% unlist %>% sample + x[sample(n, size = n/10)] <- NA + return(x) + } > > nested_tibble <- function() { + sub_tibble <- function(nr = 600, nc = 4) { + z <- lapply(1:nc, function(i) rand_strings(nr)) %>% + setNames(make.unique(paste0(sample(letters, nc), rand_strings(nc)))) %>% + bind_cols %>% + as_tibble + } + tibble( + col1 = rand_strings(100), + col2 = rand_strings(100), + col3 = lapply(1:100, function(i) sub_tibble(nr = 600, nc = 4)), + col4 = lapply(1:100, function(i) sub_tibble(nr = 600, nc = 4)), + col5 = lapply(1:100, function(i) sub_tibble(nr = 600, nc = 4)) + ) %>% setNames(make.unique(paste0(sample(letters, 5), rand_strings(5)))) + } > > printCarriage <- function(x) { + cat(x, "\r") + } > > attributes_serialize_identical <- function(attributes, full_object) { + identical(serialize(attributes(full_object), NULL), serialize(attributes, NULL)) + } > > attributes_identical <- function(attributes, full_object) { + identical(attributes, attributes(full_object)) + } > > ################################################################################################ > > qsave_rand <- function(x, file) { + alg <- sample(c("lz4", "zstd", "lz4hc", "zstd_stream", "uncompressed"), 1) + # alg <- "zstd_stream" + nt <- sample(5,1) + sc <- sample(0:15,1) + cl <- sample(10,1) + ch <- sample(c(T,F),1) + qsave(x, file = file, preset = "custom", algorithm = alg, + compress_level = cl, shuffle_control = sc, nthreads = nt, check_hash = ch) + } > > qattributes_rand <- function(file) { + # ar <- sample(c(T,F),1) + # don't use altrep to avoid serialization differences + # attributes_serialize_identical won't pass with ALTREP + ar <- FALSE + nt <- sample(5,1) + qattributes(file, use_alt_rep = ar, nthreads = nt, strict = T) + } > > ################################################################################################ > > for (q in 1:reps) { + cat("Rep", q, "of", reps, "\n") + # String correctness + time <- vector("numeric", length = 3) + for (tp in test_points) { + for (i in 1:3) { + x1 <- rep(letters, length.out = tp) %>% paste(collapse = "") + x1 <- c(NA, "", x1) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("strings: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + + # Character vectors + time <- vector("numeric", length = 3) + for (tp in test_points_slow) { + for (i in 1:3) { + # qs_use_alt_rep(F) + x1 <- rep(as.raw(sample(255)), length.out = tp*10) %>% rawToChar + cuts <- sample(tp*10, tp + 1) %>% sort %>% as.numeric + x1 <- splitstr(x1, cuts) + x1 <- c(NA, "", x1) + qsave_rand(x1, file = myfile) + time[i] <- Sys.time() + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Character Vectors: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + + # stringfish character vectors -- require R > 3.5.0 + if (utils::compareVersion(as.character(getRversion()), "3.5.0") != -1) { + time <- vector("numeric", length = 3) + for (tp in test_points_slow) { + for (i in 1:3) { + x1 <- rep(as.raw(sample(255)), length.out = tp*10) %>% rawToChar + cuts <- sample(tp*10, tp + 1) %>% sort %>% as.numeric + x1 <- splitstr(x1, cuts) + x1 <- c(NA, "", x1) + x1 <- stringfish::convert_to_sf(x1) + qsave_rand(x1, file = myfile) + time[i] <- Sys.time() + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Stringfish: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + } + + # Integers + time <- vector("numeric", length = 3) + for (tp in test_points) { + for (i in 1:3) { + x1 <- sample(1:tp, replace = T) + x1 <- c(NA, x1) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Integers: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + + # Doubles + time <- vector("numeric", length = 3) + for (tp in test_points) { + for (i in 1:3) { + x1 <- rnorm(tp) + x1 <- c(NA, x1) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Numeric: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + + # Logical + time <- vector("numeric", length = 3) + for (tp in test_points) { + for (i in 1:3) { + + x1 <- sample(c(T, F, NA), replace = T, size = tp) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Logical: %s, %s s",tp, signif(mean(time),4))) + } + cat("\n") + + # List + time <- vector("numeric", length = 3) + for (tp in test_points_slow) { + for (i in 1:3) { + x1 <- generateList(sample(1:4, replace = T, size = tp)) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("List: %s, %s s",tp, signif(mean(time),4))) + } + cat("\n") + + for (i in 1:3) { + x1 <- rep( replicate(1000, { rep(letters, length.out = 2^7 + sample(10, size = 1)) %>% paste(collapse = "") }), length.out = 1e6 ) + x1 <- data.frame(str = x1,num = runif(1:1000), stringsAsFactors = F) + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + do_gc() + stopifnot(attributes_identical(z, x1)) + } + cat("Data.frame test") + cat("\n") + + for (i in 1:3) { + x1 <- rep( replicate(1000, { rep(letters, length.out = 2^7 + sample(10, size = 1)) %>% paste(collapse = "") }), length.out = 1e6 ) + x1 <- data.table(str = x1,num = runif(1:1e6)) + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + do_gc() + stopifnot(attributes_serialize_identical(z, x1)) + } + cat("Data.table test") + cat("\n") + + for (i in 1:3) { + x1 <- rep( replicate(1000, { rep(letters, length.out = 2^7 + sample(10, size = 1)) %>% paste(collapse = "") }), length.out = 1e6 ) + x1 <- tibble(str = x1,num = runif(1:1e6)) + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + do_gc() + stopifnot(attributes_identical(z, x1)) + } + cat("Tibble test") + cat("\n") + + # Encoding test + if (Sys.info()[['sysname']] != "Windows") { + for (i in 1:3) { + x1 <- "己所不欲,勿施于人" # utf 8 + x2 <- x1 + Encoding(x2) <- "latin1" + x3 <- x1 + Encoding(x3) <- "bytes" + x4 <- rep(x1, x2, length.out = 1e4) %>% paste(collapse = ";") + x1 <- c(x1, x2, x3, x4) + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage("Encoding test") + } else { + printCarriage("(Encoding test not run on windows)") + } + cat("\n") + + # complex vectors + time <- vector("numeric", length = 3) + for (tp in test_points) { + for (i in 1:3) { + re <- rnorm(tp) + im <- runif(tp) + x1 <- complex(real = re, imaginary = im) + x1 <- c(NA_complex_, x1) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Complex: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + + # factors + for (tp in test_points) { + time <- vector("numeric", length = 3) + for (i in 1:3) { + x1 <- factor(rep(letters, length.out = tp), levels = sample(letters), ordered = TRUE) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Factors: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + + # Random objects + time <- vector("numeric", length = 8) + for (i in 1:8) { + # qs_use_alt_rep(sample(c(T, F), size = 1)) + obj_size <- 0 + x1 <- random_object_generator(12) + printCarriage(sprintf("Random objects: %s bytes", object.size(x1) %>% as.numeric)) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Random objects: %s s", signif(mean(time), 4))) + cat("\n") + + # nested attributes + time <- vector("numeric", length = 3) + for (i in 1:3) { + x1 <- as.list(1:26) + attr(x1[[26]], letters[26]) <- rnorm(100) + for (i in 25:1) { + attr(x1[[i]], letters[i]) <- x1[[i + 1]] + } + time[i] <- Sys.time() + for(j in 1:length(x1)) { + qsave_rand(x1[[j]], file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1[[j]])) + } + } + printCarriage(sprintf("Nested attributes: %s s", signif(mean(time), 4))) + cat("\n") + + # alt-rep -- should serialize the unpacked object + time <- vector("numeric", length = 3) + for (i in 1:3) { + x1 <- 1:max_size + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Alt rep integer: %s s", signif(mean(time), 4))) + cat("\n") + + + # Environment test + time <- vector("numeric", length = 3) + for (i in 1:3) { + x1 <- new.env() + x1[["a"]] <- 1:max_size + x1[["b"]] <- runif(max_size) + x1[["c"]] <- stringfish::random_strings(1e4, vector_mode = "normal") + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + stopifnot(attributes_identical(z[["a"]], x1[["a"]])) + stopifnot(attributes_identical(z[["b"]], x1[["b"]])) + stopifnot(attributes_identical(z[["c"]], x1[["c"]])) + time[i] <- Sys.time() - time[i] + do_gc() + } + printCarriage(sprintf("Environment test: %s s", signif(mean(time), 4))) + cat("\n") + + time <- vector("numeric", length = 3) + for (i in 1:3) { + x1 <- nested_tibble() + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + stopifnot(attributes_identical(z, x1)) + time[i] <- Sys.time() - time[i] + do_gc() + } + printCarriage(sprintf("nested tibble test: %s s", signif(mean(time), 4))) + cat("\n") + } Rep 1 of 2 strings: 0, 0.004364 s strings: 1, 0.002321 s strings: 2, 0.002336 s strings: 4, 0.001224 s strings: 8, 0.003587 s strings: 31, 0.002698 s strings: 33, 0.002393 s strings: 32, 0.002455 s strings: 255, 0.001673 s strings: 257, 0.00323 s strings: 256, 0.001592 s strings: 65535, 0.002238 s strings: 65537, 0.002048 s strings: 65536, 0.002948 s strings: 1e+06, 0.003161 s Character Vectors: 0, 0.000598 s Character Vectors: 1, 0.0007711 s Character Vectors: 2, 0.0003781 s Character Vectors: 4, 0.0006498 s Character Vectors: 8, 0.0004029 s Character Vectors: 31, 0.0007523 s Character Vectors: 33, 0.0007151 s Character Vectors: 32, 0.0003827 s Character Vectors: 255, 0.0002683 s Character Vectors: 257, 0.0001326 s Character Vectors: 256, 0.0006075 s Character Vectors: 65535, 0.002011 s Character Vectors: 65537, 0.002512 s Character Vectors: 65536, 0.002106 s Stringfish: 0, 0.0004203 s Stringfish: 1, 0.002012 s Stringfish: 2, 0.001198 s Stringfish: 4, 0.0003473 s Stringfish: 8, 0.000339 s Stringfish: 31, 0.0009883 s Stringfish: 33, 0.0008397 s Stringfish: 32, 0.0008603 s Stringfish: 255, 0.001045 s Stringfish: 257, 0.0007983 s Stringfish: 256, 0.0003296 s Stringfish: 65535, 0.002848 s Stringfish: 65537, 0.002482 s Stringfish: 65536, 0.002221 s Integers: 0, 0.006012 s Integers: 1, 0.003929 s Integers: 2, 0.002568 s Integers: 4, 0.001272 s Integers: 8, 0.001692 s Integers: 31, 0.001201 s Integers: 33, 0.001305 s Integers: 32, 0.001428 s Integers: 255, 0.001426 s Integers: 257, 0.001891 s Integers: 256, 0.001484 s Integers: 65535, 0.004144 s Integers: 65537, 0.004242 s Integers: 65536, 0.006589 s Integers: 1e+06, 0.0679 s Numeric: 0, 0.001536 s Numeric: 1, 0.002007 s Numeric: 2, 0.001374 s Numeric: 4, 0.00206 s Numeric: 8, 0.001829 s Numeric: 31, 0.001354 s Numeric: 33, 0.001568 s Numeric: 32, 0.001045 s Numeric: 255, 0.001426 s Numeric: 257, 0.004995 s Numeric: 256, 0.003303 s Numeric: 65535, 0.003231 s Numeric: 65537, 0.005395 s Numeric: 65536, 0.008679 s Numeric: 1e+06, 0.04164 s Logical: 0, 0.001117 s Logical: 1, 0.002502 s Logical: 2, 0.00478 s Logical: 4, 0.001604 s Logical: 8, 0.001324 s Logical: 31, 0.004022 s Logical: 33, 0.001649 s Logical: 32, 0.001454 s Logical: 255, 0.001496 s Logical: 257, 0.001651 s Logical: 256, 0.001781 s Logical: 65535, 0.004419 s Logical: 65537, 0.001452 s Logical: 65536, 0.003584 s Logical: 1e+06, 0.04666 s List: 0, 0.002376 s List: 1, 0.001296 s List: 2, 0.001907 s List: 4, 0.001782 s List: 8, 0.001913 s List: 31, 0.004799 s List: 33, 0.001405 s List: 32, 0.001811 s List: 255, 0.001595 s List: 257, 0.002159 s List: 256, 0.001459 s List: 65535, 0.01534 s List: 65537, 0.01231 s List: 65536, 0.02687 s Data.frame test Data.table test Tibble test (Encoding test not run on windows) Complex: 0, 0.00405 s Complex: 1, 0.00444 s Complex: 2, 0.002528 s Complex: 4, 0.000857 s Complex: 8, 0.002467 s Complex: 31, 0.002201 s Complex: 33, 0.002346 s Complex: 32, 0.001359 s Complex: 255, 0.001134 s Complex: 257, 0.00284 s Complex: 256, 0.0009727 s Complex: 65535, 0.01565 s Complex: 65537, 0.02576 s Complex: 65536, 0.01192 s Complex: 1e+06, 0.1918 s Factors: 0, 0.001654 s Factors: 1, 0.001471 s Factors: 2, 0.001011 s Factors: 4, 0.0009712 s Factors: 8, 0.008101 s Factors: 31, 0.0007284 s Factors: 33, 0.001414 s Factors: 32, 0.002135 s Factors: 255, 0.001182 s Factors: 257, 0.001803 s Factors: 256, 0.001512 s Factors: 65535, 0.004065 s Factors: 65537, 0.002522 s Factors: 65536, 0.002448 s Factors: 1e+06, 0.008383 s Random objects: 1050112 bytes Random objects: 1023056 bytes Random objects: 1094144 bytes Random objects: 1016536 bytes Random objects: 1055496 bytes Random objects: 1041864 bytes Random objects: 1099576 bytes Random objects: 1039464 bytes Random objects: 0.02614 s Nested attributes: 580500000 s Alt rep integer: 0.01945 s Environment test: 0.07223 s nested tibble test: 0.3644 s Rep 2 of 2 strings: 0, 0.005295 s strings: 1, 0.001671 s strings: 2, 0.001495 s strings: 4, 0.002651 s strings: 8, 0.001654 s strings: 31, 0.001349 s strings: 33, 0.00146 s strings: 32, 0.004749 s strings: 255, 0.001644 s strings: 257, 0.001994 s strings: 256, 0.00168 s strings: 65535, 0.001963 s strings: 65537, 0.002559 s strings: 65536, 0.002068 s strings: 1e+06, 0.004305 s Character Vectors: 0, 0.0002286 s Character Vectors: 1, 0.000169 s Character Vectors: 2, 0.001299 s Character Vectors: 4, 0.0005759 s Character Vectors: 8, 0.0005141 s Character Vectors: 31, 0.0008604 s Character Vectors: 33, 0.0003447 s Character Vectors: 32, 0.0005573 s Character Vectors: 255, 0.000318 s Character Vectors: 257, 0.0006626 s Character Vectors: 256, 0.0005777 s Character Vectors: 65535, 0.002207 s Character Vectors: 65537, 0.002236 s Character Vectors: 65536, 0.00182 s Stringfish: 0, 0.000338 s Stringfish: 1, 0.0007513 s Stringfish: 2, 0.0002442 s Stringfish: 4, 0.0003603 s Stringfish: 8, 0.0003264 s Stringfish: 31, 0.00052 s Stringfish: 33, 0.0003937 s Stringfish: 32, 0.00088 s Stringfish: 255, 0.0003553 s Stringfish: 257, 0.0005557 s Stringfish: 256, 0.0009827 s Stringfish: 65535, 0.001835 s Stringfish: 65537, 0.002403 s Stringfish: 65536, 0.002385 s Integers: 0, 0.003459 s Integers: 1, 0.003529 s Integers: 2, 0.004007 s Integers: 4, 0.001398 s Integers: 8, 0.002565 s Integers: 31, 0.00243 s Integers: 33, 0.004003 s Integers: 32, 0.001889 s Integers: 255, 0.002482 s Integers: 257, 0.003239 s Integers: 256, 0.004968 s Integers: 65535, 0.00199 s Integers: 65537, 0.00554 s Integers: 65536, 0.005105 s Integers: 1e+06, 0.01078 s Numeric: 0, 0.003035 s Numeric: 1, 0.001565 s Numeric: 2, 0.002353 s Numeric: 4, 0.001447 s Numeric: 8, 0.002443 s Numeric: 31, 0.001823 s Numeric: 33, 0.001873 s Numeric: 32, 0.001067 s Numeric: 255, 0.0007974 s Numeric: 257, 0.002113 s Numeric: 256, 0.001812 s Numeric: 65535, 0.003441 s Numeric: 65537, 0.006944 s Numeric: 65536, 0.0108 s Numeric: 1e+06, 0.07359 s Logical: 0, 0.006134 s Logical: 1, 0.001521 s Logical: 2, 0.001381 s Logical: 4, 0.00249 s Logical: 8, 0.001098 s Logical: 31, 0.001937 s Logical: 33, 0.002146 s Logical: 32, 0.005274 s Logical: 255, 0.002065 s Logical: 257, 0.001815 s Logical: 256, 0.001073 s Logical: 65535, 0.009353 s Logical: 65537, 0.01747 s Logical: 65536, 0.00647 s Logical: 1e+06, 0.02041 s List: 0, 0.001758 s List: 1, 0.00295 s List: 2, 0.002266 s List: 4, 0.0006863 s List: 8, 0.00253 s List: 31, 0.002318 s List: 33, 0.001149 s List: 32, 0.002533 s List: 255, 0.002265 s List: 257, 0.001488 s List: 256, 0.001751 s List: 65535, 0.01719 s List: 65537, 0.01013 s List: 65536, 0.01124 s Data.frame test Data.table test Tibble test (Encoding test not run on windows) Complex: 0, 0.002442 s Complex: 1, 0.005103 s Complex: 2, 0.003426 s Complex: 4, 0.003134 s Complex: 8, 0.008117 s Complex: 31, 0.003085 s Complex: 33, 0.003629 s Complex: 32, 0.00262 s Complex: 255, 0.002079 s Complex: 257, 0.001157 s Complex: 256, 0.000797 s Complex: 65535, 0.01043 s Complex: 65537, 0.01418 s Complex: 65536, 0.01028 s Complex: 1e+06, 0.2255 s Factors: 0, 0.002807 s Factors: 1, 0.003624 s Factors: 2, 0.003945 s Factors: 4, 0.001646 s Factors: 8, 0.001517 s Factors: 31, 0.00184 s Factors: 33, 0.002464 s Factors: 32, 0.003331 s Factors: 255, 0.001445 s Factors: 257, 0.001321 s Factors: 256, 0.004495 s Factors: 65535, 0.003877 s Factors: 65537, 0.005521 s Factors: 65536, 0.001618 s Factors: 1e+06, 0.006703 s Random objects: 1057888 bytes Random objects: 1065648 bytes Random objects: 1051272 bytes Random objects: 1050248 bytes Random objects: 1069464 bytes Random objects: 1016928 bytes Random objects: 1056024 bytes Random objects: 1024120 bytes Random objects: 0.01202 s Nested attributes: 580500000 s Alt rep integer: 0.01039 s Environment test: 0.07961 s nested tibble test: 0.7207 s > > cat("tests done\n") tests done > rm(list = setdiff(ls(), c("total_time", "do_gc"))) > do_gc() used (Mb) gc trigger (Mb) max used (Mb) Ncells 666661 35.7 1993996 106.5 2506926 133.9 Vcells 2109352 16.1 17903036 136.6 22378793 170.8 > total_time <- Sys.time() - total_time > print(total_time) Time difference of 1.461007 mins > > proc.time() user system elapsed 86.34 14.06 87.79