R Under development (unstable) (2023-12-04 r85659 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > total_time <- Sys.time() > > suppressMessages(library(Rcpp)) > suppressMessages(library(dplyr)) > suppressMessages(library(data.table)) > suppressMessages(library(qs)) > suppressMessages(library(stringfish)) > options(warn = 1) > > do_gc <- function() { + if (utils::compareVersion(as.character(getRversion()), "3.5.0") != -1) { + gc(full = TRUE) + } else { + gc() + } + } > > # because sourceCpp uses setwd, we need absolute path to R_TESTS when run within R CMD check > R_TESTS <- Sys.getenv("R_TESTS") # startup.Rs > if (nzchar(R_TESTS)) { + R_TESTS_absolute <- normalizePath(R_TESTS) + Sys.setenv(R_TESTS = R_TESTS_absolute) + } > sourceCpp(code="#include + using namespace Rcpp; + // [[Rcpp::plugins(cpp11)]] + // [[Rcpp::export(rng=false)]] + CharacterVector splitstr(std::string x, std::vector cuts){ + CharacterVector ret(cuts.size() - 1); + for(uint64_t i=1; i list_elements){ + auto randchar = []() -> char + { + const char charset[] = + \"0123456789\" + \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\" + \"abcdefghijklmnopqrstuvwxyz\"; + const size_t max_index = (sizeof(charset) - 1); + return charset[ rand() % max_index ]; + }; + List ret(list_elements.size()); + std::string str(10,0); + for(size_t i=0; i(rand()); + break; + } + } + return ret; + }") > if (nzchar(R_TESTS)) Sys.setenv(R_TESTS = R_TESTS) > > args <- commandArgs(T) > if (nzchar(R_TESTS) || ((length(args) > 0) && args[1] == "check")) { # do fewer tests within R CMD check so it completes within a reasonable amount of time + reps <- 2 + test_points <- c(0, 1, 2, 4, 8, 2^5 - 1, 2^5 + 1, 2^5, 2^8 - 1, 2^8 + 1, 2^8, 2^16 - 1, 2^16 + 1, 2^16, 1e6) + test_points_slow <- c(0, 1, 2, 4, 8, 2^5 - 1, 2^5 + 1, 2^5, 2^8 - 1, 2^8 + 1, 2^8, 2^16 - 1, 2^16 + 1, 2^16) # for Character Vector, stringfish and list + max_size <- 1e6 + } else { + reps <- 3 + test_points <- c(0, 1, 2, 4, 8, 2^5 - 1, 2^5 + 1, 2^5, 2^8 - 1, 2^8 + 1, 2^8, 2^16 - 1, 2^16 + 1, 2^16, 1e6, 1e7) + test_points_slow <- test_points + max_size <- 1e7 + } > myfile <- tempfile() > > obj_size <- 0 > get_obj_size <- function() { + get("obj_size", envir = globalenv()) + } > set_obj_size <- function(x) { + assign("obj_size", get_obj_size() + as.numeric(object.size(x)), envir = globalenv()) + return(get_obj_size()); + } > random_object_generator <- function(N, with_envs = FALSE) { # additional input: global obj_size, max_size + if (sample(3, 1) == 1) { + ret <- as.list(1:N) + } else if (sample(2, 1) == 1) { + ret <- as.pairlist(1:N) + } else { + ret <- as.pairlist(1:N) + setlev(ret, sample(2L^12L, 1L) - 1L) + setobj(ret, 1L) + } + + for (i in 1:N) { + if (get_obj_size() > get("max_size", envir = globalenv())) break; + otype <- sample(12, size = 1) + z <- NULL + is_attribute <- ifelse(i == 1, F, sample(c(F, T), size = 1)) + if (otype == 1) {z <- rnorm(1e4); set_obj_size(z);} + else if (otype == 2) { z <- sample(1e4) - 5e2; set_obj_size(z); } + else if (otype == 3) { z <- sample(c(T, F, NA), size = 1e4, replace = T); set_obj_size(z); } + else if (otype == 4) { z <- (sample(256, size = 1e4, replace = T) - 1) %>% as.raw; set_obj_size(z); } + else if (otype == 5) { z <- replicate(sample(1e4, size = 1), {rep(letters, length.out = sample(10, size = 1)) %>% paste(collapse = "")}); set_obj_size(z); } + else if (otype == 6) { z <- rep(letters, length.out = sample(1e4, size = 1)) %>% paste(collapse = ""); set_obj_size(z); } + else if (otype == 7) { z <- as.formula("y ~ a + b + c : d", env = globalenv()); attr(z, "blah") <- sample(1e4) - 5e2; set_obj_size(z); } + else if (with_envs && otype %in% c(8, 9)) { z <- function(x) {x + runif(1)} } + # else if(with_envs && otype %in% c(10,11)) { z <- new.env(); z$x <- random_object_generator(N, with_envs); makeActiveBinding("y", function() runif(1), z) } + else { z <- random_object_generator(N, with_envs) } + if (is_attribute) { + attr(ret[[i - 1]], runif(1) %>% as.character()) <- z + } else { + ret[[i]] <- z + } + } + return(ret) + } > > rand_strings <- function(n) { + s <- sample(0:100, size = n, replace = T) + x <- lapply(unique(s), function(si) { + stringfish::random_strings(sum(s == si), si, vector_mode = "normal") + }) %>% unlist %>% sample + x[sample(n, size = n/10)] <- NA + return(x) + } > > nested_tibble <- function() { + sub_tibble <- function(nr = 600, nc = 4) { + z <- lapply(1:nc, function(i) rand_strings(nr)) %>% + setNames(make.unique(paste0(sample(letters, nc), rand_strings(nc)))) %>% + bind_cols %>% + as_tibble + } + tibble( + col1 = rand_strings(100), + col2 = rand_strings(100), + col3 = lapply(1:100, function(i) sub_tibble(nr = 600, nc = 4)), + col4 = lapply(1:100, function(i) sub_tibble(nr = 600, nc = 4)), + col5 = lapply(1:100, function(i) sub_tibble(nr = 600, nc = 4)) + ) %>% setNames(make.unique(paste0(sample(letters, 5), rand_strings(5)))) + } > > printCarriage <- function(x) { + cat(x, "\r") + } > > attributes_serialize_identical <- function(attributes, full_object) { + identical(serialize(attributes(full_object), NULL), serialize(attributes, NULL)) + } > > attributes_identical <- function(attributes, full_object) { + identical(attributes, attributes(full_object)) + } > > ################################################################################################ > > qsave_rand <- function(x, file) { + alg <- sample(c("lz4", "zstd", "lz4hc", "zstd_stream", "uncompressed"), 1) + # alg <- "zstd_stream" + nt <- sample(5,1) + sc <- sample(0:15,1) + cl <- sample(10,1) + ch <- sample(c(T,F),1) + qsave(x, file = file, preset = "custom", algorithm = alg, + compress_level = cl, shuffle_control = sc, nthreads = nt, check_hash = ch) + } > > qattributes_rand <- function(file) { + # ar <- sample(c(T,F),1) + # don't use altrep to avoid serialization differences + # attributes_serialize_identical won't pass with ALTREP + ar <- FALSE + nt <- sample(5,1) + qattributes(file, use_alt_rep = ar, nthreads = nt, strict = T) + } > > ################################################################################################ > > for (q in 1:reps) { + cat("Rep", q, "of", reps, "\n") + # String correctness + time <- vector("numeric", length = 3) + for (tp in test_points) { + for (i in 1:3) { + x1 <- rep(letters, length.out = tp) %>% paste(collapse = "") + x1 <- c(NA, "", x1) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("strings: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + + # Character vectors + time <- vector("numeric", length = 3) + for (tp in test_points_slow) { + for (i in 1:3) { + # qs_use_alt_rep(F) + x1 <- rep(as.raw(sample(255)), length.out = tp*10) %>% rawToChar + cuts <- sample(tp*10, tp + 1) %>% sort %>% as.numeric + x1 <- splitstr(x1, cuts) + x1 <- c(NA, "", x1) + qsave_rand(x1, file = myfile) + time[i] <- Sys.time() + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Character Vectors: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + + # stringfish character vectors -- require R > 3.5.0 + if (utils::compareVersion(as.character(getRversion()), "3.5.0") != -1) { + time <- vector("numeric", length = 3) + for (tp in test_points_slow) { + for (i in 1:3) { + x1 <- rep(as.raw(sample(255)), length.out = tp*10) %>% rawToChar + cuts <- sample(tp*10, tp + 1) %>% sort %>% as.numeric + x1 <- splitstr(x1, cuts) + x1 <- c(NA, "", x1) + x1 <- stringfish::convert_to_sf(x1) + qsave_rand(x1, file = myfile) + time[i] <- Sys.time() + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Stringfish: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + } + + # Integers + time <- vector("numeric", length = 3) + for (tp in test_points) { + for (i in 1:3) { + x1 <- sample(1:tp, replace = T) + x1 <- c(NA, x1) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Integers: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + + # Doubles + time <- vector("numeric", length = 3) + for (tp in test_points) { + for (i in 1:3) { + x1 <- rnorm(tp) + x1 <- c(NA, x1) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Numeric: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + + # Logical + time <- vector("numeric", length = 3) + for (tp in test_points) { + for (i in 1:3) { + + x1 <- sample(c(T, F, NA), replace = T, size = tp) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Logical: %s, %s s",tp, signif(mean(time),4))) + } + cat("\n") + + # List + time <- vector("numeric", length = 3) + for (tp in test_points_slow) { + for (i in 1:3) { + x1 <- generateList(sample(1:4, replace = T, size = tp)) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("List: %s, %s s",tp, signif(mean(time),4))) + } + cat("\n") + + for (i in 1:3) { + x1 <- rep( replicate(1000, { rep(letters, length.out = 2^7 + sample(10, size = 1)) %>% paste(collapse = "") }), length.out = 1e6 ) + x1 <- data.frame(str = x1,num = runif(1:1000), stringsAsFactors = F) + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + do_gc() + stopifnot(attributes_identical(z, x1)) + } + cat("Data.frame test") + cat("\n") + + for (i in 1:3) { + x1 <- rep( replicate(1000, { rep(letters, length.out = 2^7 + sample(10, size = 1)) %>% paste(collapse = "") }), length.out = 1e6 ) + x1 <- data.table(str = x1,num = runif(1:1e6)) + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + do_gc() + stopifnot(attributes_serialize_identical(z, x1)) + } + cat("Data.table test") + cat("\n") + + for (i in 1:3) { + x1 <- rep( replicate(1000, { rep(letters, length.out = 2^7 + sample(10, size = 1)) %>% paste(collapse = "") }), length.out = 1e6 ) + x1 <- tibble(str = x1,num = runif(1:1e6)) + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + do_gc() + stopifnot(attributes_identical(z, x1)) + } + cat("Tibble test") + cat("\n") + + # Encoding test + if (Sys.info()[['sysname']] != "Windows") { + for (i in 1:3) { + x1 <- "己所不欲,勿施于人" # utf 8 + x2 <- x1 + Encoding(x2) <- "latin1" + x3 <- x1 + Encoding(x3) <- "bytes" + x4 <- rep(x1, x2, length.out = 1e4) %>% paste(collapse = ";") + x1 <- c(x1, x2, x3, x4) + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage("Encoding test") + } else { + printCarriage("(Encoding test not run on windows)") + } + cat("\n") + + # complex vectors + time <- vector("numeric", length = 3) + for (tp in test_points) { + for (i in 1:3) { + re <- rnorm(tp) + im <- runif(tp) + x1 <- complex(real = re, imaginary = im) + x1 <- c(NA_complex_, x1) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Complex: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + + # factors + for (tp in test_points) { + time <- vector("numeric", length = 3) + for (i in 1:3) { + x1 <- factor(rep(letters, length.out = tp), levels = sample(letters), ordered = TRUE) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Factors: %s, %s s",tp, signif(mean(time), 4))) + } + cat("\n") + + # Random objects + time <- vector("numeric", length = 8) + for (i in 1:8) { + # qs_use_alt_rep(sample(c(T, F), size = 1)) + obj_size <- 0 + x1 <- random_object_generator(12) + printCarriage(sprintf("Random objects: %s bytes", object.size(x1) %>% as.numeric)) + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Random objects: %s s", signif(mean(time), 4))) + cat("\n") + + # nested attributes + time <- vector("numeric", length = 3) + for (i in 1:3) { + x1 <- as.list(1:26) + attr(x1[[26]], letters[26]) <- rnorm(100) + for (i in 25:1) { + attr(x1[[i]], letters[i]) <- x1[[i + 1]] + } + time[i] <- Sys.time() + for(j in 1:length(x1)) { + qsave_rand(x1[[j]], file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1[[j]])) + } + } + printCarriage(sprintf("Nested attributes: %s s", signif(mean(time), 4))) + cat("\n") + + # alt-rep -- should serialize the unpacked object + time <- vector("numeric", length = 3) + for (i in 1:3) { + x1 <- 1:max_size + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + time[i] <- Sys.time() - time[i] + do_gc() + stopifnot(attributes_identical(z, x1)) + } + printCarriage(sprintf("Alt rep integer: %s s", signif(mean(time), 4))) + cat("\n") + + + # Environment test + time <- vector("numeric", length = 3) + for (i in 1:3) { + x1 <- new.env() + x1[["a"]] <- 1:max_size + x1[["b"]] <- runif(max_size) + x1[["c"]] <- stringfish::random_strings(1e4, vector_mode = "normal") + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + stopifnot(attributes_identical(z[["a"]], x1[["a"]])) + stopifnot(attributes_identical(z[["b"]], x1[["b"]])) + stopifnot(attributes_identical(z[["c"]], x1[["c"]])) + time[i] <- Sys.time() - time[i] + do_gc() + } + printCarriage(sprintf("Environment test: %s s", signif(mean(time), 4))) + cat("\n") + + time <- vector("numeric", length = 3) + for (i in 1:3) { + x1 <- nested_tibble() + time[i] <- Sys.time() + qsave_rand(x1, file = myfile) + z <- qattributes_rand(file = myfile) + stopifnot(attributes_identical(z, x1)) + time[i] <- Sys.time() - time[i] + do_gc() + } + printCarriage(sprintf("nested tibble test: %s s", signif(mean(time), 4))) + cat("\n") + } Rep 1 of 2 strings: 0, 0.008687 s strings: 1, 0.00334 s strings: 2, 0.005474 s strings: 4, 0.003804 s strings: 8, 0.002778 s strings: 31, 0.002315 s strings: 33, 0.005455 s strings: 32, 0.002521 s strings: 255, 0.002591 s strings: 257, 0.004201 s strings: 256, 0.0006503 s strings: 65535, 0.003894 s strings: 65537, 0.002627 s strings: 65536, 0.001231 s strings: 1e+06, 0.005533 s Character Vectors: 0, 0.0005613 s Character Vectors: 1, 0.001075 s Character Vectors: 2, 0.001177 s Character Vectors: 4, 0.001191 s Character Vectors: 8, 0.0001527 s Character Vectors: 31, 0.001204 s Character Vectors: 33, 0.001554 s Character Vectors: 32, 0.0004509 s Character Vectors: 255, 0.003416 s Character Vectors: 257, 0.0009813 s Character Vectors: 256, 0.0003434 s Character Vectors: 65535, 0.002348 s Character Vectors: 65537, 0.003934 s Character Vectors: 65536, 0.004997 s Stringfish: 0, 0.001695 s Stringfish: 1, 0.001429 s Stringfish: 2, 0.0007383 s Stringfish: 4, 0.00171 s Stringfish: 8, 0.000491 s Stringfish: 31, 0.002032 s Stringfish: 33, 0.001032 s Stringfish: 32, 0.001509 s Stringfish: 255, 0.0005743 s Stringfish: 257, 0.001373 s Stringfish: 256, 0.0005471 s Stringfish: 65535, 0.003339 s Stringfish: 65537, 0.003369 s Stringfish: 65536, 0.003341 s Integers: 0, 0.001252 s Integers: 1, 0.002135 s Integers: 2, 0.008379 s Integers: 4, 0.00577 s Integers: 8, 0.001726 s Integers: 31, 0.002956 s Integers: 33, 0.00142 s Integers: 32, 0.002556 s Integers: 255, 0.001289 s Integers: 257, 0.003237 s Integers: 256, 0.00221 s Integers: 65535, 0.01225 s Integers: 65537, 0.01036 s Integers: 65536, 0.008856 s Integers: 1e+06, 0.04484 s Numeric: 0, 0.002334 s Numeric: 1, 0.003997 s Numeric: 2, 0.005287 s Numeric: 4, 0.002951 s Numeric: 8, 0.004434 s Numeric: 31, 0.001225 s Numeric: 33, 0.000914 s Numeric: 32, 0.002054 s Numeric: 255, 0.001347 s Numeric: 257, 0.003147 s Numeric: 256, 0.00191 s Numeric: 65535, 0.02275 s Numeric: 65537, 0.0189 s Numeric: 65536, 0.004614 s Numeric: 1e+06, 0.1004 s Logical: 0, 0.00603 s Logical: 1, 0.004242 s Logical: 2, 0.00112 s Logical: 4, 0.002785 s Logical: 8, 0.004752 s Logical: 31, 0.001594 s Logical: 33, 0.003152 s Logical: 32, 0.002151 s Logical: 255, 0.001685 s Logical: 257, 0.002262 s Logical: 256, 0.002335 s Logical: 65535, 0.01627 s Logical: 65537, 0.01246 s Logical: 65536, 0.02618 s Logical: 1e+06, 0.04284 s List: 0, 0.00116 s List: 1, 0.007163 s List: 2, 0.0008681 s List: 4, 0.00161 s List: 8, 0.002613 s List: 31, 0.006201 s List: 33, 0.001703 s List: 32, 0.001594 s List: 255, 0.002424 s List: 257, 0.001645 s List: 256, 0.002637 s List: 65535, 0.06087 s List: 65537, 0.03106 s List: 65536, 0.02254 s Data.frame test Data.table test Tibble test (Encoding test not run on windows) Complex: 0, 0.004774 s Complex: 1, 0.00219 s Complex: 2, 0.001274 s Complex: 4, 0.003224 s Complex: 8, 0.004454 s Complex: 31, 0.002871 s Complex: 33, 0.005057 s Complex: 32, 0.003381 s Complex: 255, 0.002492 s Complex: 257, 0.003273 s Complex: 256, 0.002797 s Complex: 65535, 0.01244 s Complex: 65537, 0.03872 s Complex: 65536, 0.04031 s Complex: 1e+06, 0.05958 s Factors: 0, 0.005488 s Factors: 1, 0.004472 s Factors: 2, 0.006269 s Factors: 4, 0.00474 s Factors: 8, 0.001058 s Factors: 31, 0.004498 s Factors: 33, 0.00788 s Factors: 32, 0.005316 s Factors: 255, 0.002933 s Factors: 257, 0.004126 s Factors: 256, 0.002733 s Factors: 65535, 0.002718 s Factors: 65537, 0.002532 s Factors: 65536, 0.003289 s Factors: 1e+06, 0.03458 s Random objects: 1037424 bytes Random objects: 1027200 bytes Random objects: 1065104 bytes Random objects: 1086488 bytes Random objects: 1095112 bytes Random objects: 1050696 bytes Random objects: 1042440 bytes Random objects: 1091728 bytes Random objects: 0.02336 s Nested attributes: 567300000 s Alt rep integer: 0.04578 s Environment test: 0.09539 s nested tibble test: 0.6858 s Rep 2 of 2 strings: 0, 0.01068 s strings: 1, 0.008494 s strings: 2, 0.00541 s strings: 4, 0.002288 s strings: 8, 0.001547 s strings: 31, 0.001193 s strings: 33, 0.007795 s strings: 32, 0.001598 s strings: 255, 0.00214 s strings: 257, 0.002219 s strings: 256, 0.006344 s strings: 65535, 0.01067 s strings: 65537, 0.002749 s strings: 65536, 0.002756 s strings: 1e+06, 0.003668 s Character Vectors: 0, 0.001246 s Character Vectors: 1, 0.0004726 s Character Vectors: 2, 0.0004823 s Character Vectors: 4, 0.000144 s Character Vectors: 8, 0.0001819 s Character Vectors: 31, 0.0001774 s Character Vectors: 33, 0.001261 s Character Vectors: 32, 0.001367 s Character Vectors: 255, 0.0006377 s Character Vectors: 257, 0.001896 s Character Vectors: 256, 0.0006513 s Character Vectors: 65535, 0.002744 s Character Vectors: 65537, 0.002045 s Character Vectors: 65536, 0.003407 s Stringfish: 0, 0.001201 s Stringfish: 1, 0.0007243 s Stringfish: 2, 0.000643 s Stringfish: 4, 0.002129 s Stringfish: 8, 0.001291 s Stringfish: 31, 0.0009763 s Stringfish: 33, 0.0004298 s Stringfish: 32, 0.0005967 s Stringfish: 255, 0.002974 s Stringfish: 257, 0.002656 s Stringfish: 256, 0.001704 s Stringfish: 65535, 0.002992 s Stringfish: 65537, 0.003462 s Stringfish: 65536, 0.00544 s Integers: 0, 0.005416 s Integers: 1, 0.00219 s Integers: 2, 0.001985 s Integers: 4, 0.002523 s Integers: 8, 0.001552 s Integers: 31, 0.002576 s Integers: 33, 0.001789 s Integers: 32, 0.003707 s Integers: 255, 0.003632 s Integers: 257, 0.002343 s Integers: 256, 0.002396 s Integers: 65535, 0.003804 s Integers: 65537, 0.004262 s Integers: 65536, 0.002758 s Integers: 1e+06, 0.01862 s Numeric: 0, 0.005818 s Numeric: 1, 0.001072 s Numeric: 2, 0.001704 s Numeric: 4, 0.006738 s Numeric: 8, 0.0015 s Numeric: 31, 0.00167 s Numeric: 33, 0.001514 s Numeric: 32, 0.00202 s Numeric: 255, 0.003515 s Numeric: 257, 0.003128 s Numeric: 256, 0.003618 s Numeric: 65535, 0.005737 s Numeric: 65537, 0.01035 s Numeric: 65536, 0.01044 s Numeric: 1e+06, 0.03592 s Logical: 0, 0.007184 s Logical: 1, 0.00407 s Logical: 2, 0.01157 s Logical: 4, 0.002501 s Logical: 8, 0.00248 s Logical: 31, 0.002448 s Logical: 33, 0.003086 s Logical: 32, 0.001713 s Logical: 255, 0.004046 s Logical: 257, 0.002223 s Logical: 256, 0.004064 s Logical: 65535, 0.01036 s Logical: 65537, 0.0034 s Logical: 65536, 0.005718 s Logical: 1e+06, 0.05663 s List: 0, 0.005028 s List: 1, 0.008358 s List: 2, 0.002988 s List: 4, 0.006265 s List: 8, 0.00502 s List: 31, 0.003974 s List: 33, 0.002013 s List: 32, 0.001671 s List: 255, 0.004241 s List: 257, 0.003362 s List: 256, 0.002441 s List: 65535, 0.01841 s List: 65537, 0.02134 s List: 65536, 0.04125 s Data.frame test Data.table test Tibble test (Encoding test not run on windows) Complex: 0, 0.01443 s Complex: 1, 0.002721 s Complex: 2, 0.003448 s Complex: 4, 0.004099 s Complex: 8, 0.002723 s Complex: 31, 0.002133 s Complex: 33, 0.001114 s Complex: 32, 0.001642 s Complex: 255, 0.003654 s Complex: 257, 0.002461 s Complex: 256, 0.002302 s Complex: 65535, 0.04462 s Complex: 65537, 0.03174 s Complex: 65536, 0.01729 s Complex: 1e+06, 0.4752 s Factors: 0, 0.01213 s Factors: 1, 0.003446 s Factors: 2, 0.008585 s Factors: 4, 0.001337 s Factors: 8, 0.003744 s Factors: 31, 0.001386 s Factors: 33, 0.001081 s Factors: 32, 0.002076 s Factors: 255, 0.002519 s Factors: 257, 0.001271 s Factors: 256, 0.00232 s Factors: 65535, 0.003898 s Factors: 65537, 0.002415 s Factors: 65536, 0.002609 s Factors: 1e+06, 0.01272 s Random objects: 1038408 bytes Random objects: 1059008 bytes Random objects: 1097080 bytes Random objects: 1102128 bytes Random objects: 1031648 bytes Random objects: 1019392 bytes Random objects: 1033744 bytes Random objects: 1023424 bytes Random objects: 0.03378 s Nested attributes: 567300000 s Alt rep integer: 0.05228 s Environment test: 0.271 s nested tibble test: 1.137 s > > cat("tests done\n") tests done > rm(list = setdiff(ls(), c("total_time", "do_gc"))) > do_gc() used (Mb) gc trigger (Mb) max used (Mb) Ncells 659160 35.3 2415287 129.0 3019108 161.3 Vcells 2097318 16.1 21547642 164.4 26934545 205.5 > total_time <- Sys.time() - total_time > print(total_time) Time difference of 2.362754 mins > > proc.time() user system elapsed 140.82 22.03 142.00