context("qgam_discrete") test_that("qgam_discrete", { set.seed(414) par(mfrow = c(2, 2)) par(mar = c(5.1, 4.1, 1.1, 0.1)) for(ii in 1:1){ #### !!!!!!!!!! set to 1:4 to test also elfss if(ii == 1){ ### 1) 4D Gaussian example dat <- gamSim(1, n=2000, dist="normal", scale=2, verbose=FALSE) form <- y ~ s(x0)+s(x1)+s(x2)+s(x3) lsig <- seq(-5.5, 4, length.out = 15) qus <- c(0.01, 0.5, 0.99) } if(ii == 2){ ### 2) 1D Gamma esample n <- 2000 x <- seq(-4, 4, length.out = n) X <- cbind(1, x, x^2) beta <- c(0, 1, 1) sigma <- 1 # sigma = .1+(x+4)*.5 ## sigma grows with x f <- drop(X %*% beta) tauSim <- 0.9 y <- f + rgamma(n, 3, 1)# rlf(n, 0, tau = tauSim, sig = sigma, lam)# # # rnorm(n, 0, sigma) form <- y ~ s(x, k = 30) dat <- data.frame(cbind(y, x)) names(dat) <- c("y", "x") qus <- c(0.01, 0.5, 0.95) } if( ii == 3 ){ ### 3) 3D Gamma esample n <- 2000 x <- runif(n, -4, 4); z <- runif(n, -8, 8); w <- runif(n, -4, 4) X <- cbind(1, x, x^2, z, sin(z), w^3, cos(w)) beta <- c(0, 1, 1, -1, 2, 0.1, 3) sigma <- 0.5 f <- drop(X %*% beta) dat <- f + rgamma(n, 3, 1) dat <- data.frame(cbind(dat, x, z, w)) names(dat) <- c("y", "x", "z", "w") bs <- "cr" formF <- y~s(x, k = 30, bs = bs) + s(z, k = 30, bs = bs) + s(w, k = 30, bs = bs) qus <- c(0.01, 0.5, 0.95) } if(ii == 4){ ### 1) 4D Gaussian example BUT gamlss version dat <- gamSim(1, n=2000, dist="normal", scale=2, verbose=FALSE) form <- list(y ~ s(x0)+s(x1)+s(x2)+s(x3), ~ s(x0)) qus <- c(0.01, 0.5, 0.99) } expect_error({ calibr <- list("standard" = list(), "discrete" = list()) for(met in c("standard", "discrete")){ calibr[[met]] <- lapply(qus, function(.q){ qgam(form, data = dat, discrete = (met == "discrete"), qu = .q, control = list("progress" = "none"))}) } } , NA) tmp <- cbind(sapply(calibr[["standard"]], "[[", "fitted.values"), sapply(calibr[["discrete"]], "[[", "fitted.values")) ylim <- range(tmp) plot(tmp[ , 1], tmp[ , 3+1], main = paste0("[",ii,"] qgam vs qgam discrete"), xlab = "standard fit", ylab = "discrete fit") abline(0, 1, col = 2) for(kk in 2:3){ lines(tmp[ , 1], tmp[ , 3+1], col = kk) } legend("topleft", col = 1:3, lty = 1, legend = qus) expect_error({ withCallingHandlers( { calibr <- list("standard" = list(), "discrete" = list()) for(met in c("standard", "discrete")){ calibr[[met]] <- mqgam(form, data = dat, discrete = (met == "discrete"), qu = qus, control = list("progress" = "none")) } }, warning = function(w) { if (endsWith(conditionMessage(w), "algorithm did not converge") || endsWith(conditionMessage(w), "check results carefully")) invokeRestart("muffleWarning") }) }, NA) tmp <- cbind(sapply(calibr[["standard"]]$fit, "[[", "fitted.values"), sapply(calibr[["discrete"]]$fit, "[[", "fitted.values")) ylim <- range(tmp) plot(tmp[ , 1], tmp[ , 3+1], main = paste0("[",ii,"] mqgam vs mqgam discrete"), xlab = "standard fit", ylab = "discrete fit") abline(0, 1, col = 2) for(kk in 2:3){ lines(tmp[ , 1], tmp[ , 3+1], col = kk) } legend("topleft", col = 1:3, lty = 1, legend = qus) } })