old <- options(warn=1) on.exit(options(old)) library(qMRI) dataDir <- system.file("extdata",package="qMRI") # # set file names for T1w, MTw and PDw images # t1Names <- paste0("t1w_",1:8,".nii.gz") mtNames <- paste0("mtw_",1:6,".nii.gz") pdNames <- paste0("pdw_",1:8,".nii.gz") t1Files <- file.path(dataDir, t1Names) mtFiles <- file.path(dataDir, mtNames) pdFiles <- file.path(dataDir, pdNames) # # file names of mask and B1 field map # B1File <- file.path(dataDir, "B1map.nii.gz") maskFile <- file.path(dataDir, "mask.nii.gz") # # Acquisition parameters (TE, TR, Flip Angle) for T1w, MTw and PDw images # TE <- c(2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 16.1, 18.4, 2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 16.1, 18.4) TR <- rep(25, 22) FA <- c(rep(21, 8), rep(6, 6), rep(6, 8)) # # read MPM example data # library(qMRI) mpm <- readMPMData(t1Files, pdFiles, mtFiles, maskFile, TR = TR, TE = TE, FA = FA, verbose = FALSE) # # Estimate Parameters in the ESTATICS model # modelMPM <- estimateESTATICS(mpm, method = "NLR", verbose=FALSE) # # smooth maps of ESTATICS Parameters # setCores(2, reprt = FALSE) modelMPMsp1 <- smoothESTATICS(modelMPM, kstar = 16, alpha = 0.004, patchsize=1, verbose = FALSE) # # Compute quantitative maps (R1, R2star, PD, MT) # qMRIMaps <- calculateQI(modelMPM, b1File = B1File, TR2 = 3.4) qMRISmoothedp1Maps <- calculateQI(modelMPMsp1, b1File = B1File, TR2 = 3.4) # # some statistics on differences between results # qm <- extract(qMRIMaps,c("R1","R2star","MT","PD")) qms <- extract(qMRISmoothedp1Maps,c("R1","R2star","MT","PD")) mask <- extract(mpm,"mask") cat("mean of estimated quantitative maps\n", mean(qm$R1[mask]), mean(qm$R2star[mask]), mean(qm$MT[mask]), mean(qm$PD[mask]),"\n", "mean of smoothed quantitative maps\n", mean(qms$R1[mask]), mean(qms$R2star[mask]), mean(qms$MT[mask]), mean(qms$PD[mask]),"\n", "Root mean squared difference between estimated and smoothed quantitative maps\n", sqrt(mean((qm$R1-qms$R1)[mask]^2)), sqrt(mean((qm$R2star-qms$R2star)[mask]^2)), sqrt(mean((qm$MT-qms$MT)[mask]^2)), sqrt(mean((qm$PD-qms$PD)[mask]^2)),"\n") # set mask to y==11 only yo save time # reduce mask to save time, need also to adapt storage of data mask <- extract(mpm,"mask") mask[,c(1:10,12:21),] <- FALSE mpm <- qMRI:::setMPMmask(mpm, mask) # Alternatively using Quasi-Likelihood sigma <- 50 modelMPMQL <- estimateESTATICS(mpm, method = "QL", sigma = array(sigma, mpm$sdim), L = 1, verbose=FALSE) qMRIMapsQL <- calculateQI(modelMPMQL, b1File = B1File, TR2 = 3.4) mask <- extract(mpm,"mask") qmQL <- extract(qMRIMapsQL,c("R1","R2star","MT","PD")) cat("mean of estimated quantitative maps using QL\n", mean(qmQL$R1[mask]), mean(qmQL$R2star[mask]), mean(qmQL$MT[mask]), mean(qmQL$PD[mask]),"\n")